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Unit I   : Crystal Structure 

Lattice Translation Vectors- Basis And The Crystal Structure- Primitive Lattice Cell- Types 

Of Lattices- Two Dimensional Lattice Types- Three Dimensional Lattice Types -Index 

System For Crystal Planes- Sodium Chloride Structure- Cesium Chloride Structure 

 Introduction 

Lattice Translation Vectors 

 Let us consider an ideal crystal. It is composed of atoms or groups of atoms arranged in a 

regular pattern so that the atomic arrangement at one location looks exactly the same in all 

respects to the arrangement at a corresponding locations. In the language of crystals ,we say 

that in a crystal there exits some smallest group of atoms that repeats itself in all direction in 

the crystal by means of the translation operation T defined as 

                                    T=n1a+n2b+n3c                           --------------- (1) 

 

 

 

 

 

 

 

                                         Figure :  Translation vectors 

Where n1,n2,n3 are arbitrary integers and a,b,c are vectors defined as the fundamental 

translation vectors.  Moreover, see that the application of this operation (1) to any point r 

(measured from some arbitrary origin) result in a point r′ : 

   r′  = r + T = r+n1a+n2b+n3c               ------------------- (2) 

Which is identical in all respects to the original point r, and thus satisfies the essential 

features of a perfect crystal. This is not possible for an imperfect crystal , there r′ is not 
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identical to r for any arbitrary choice of n1,n2,n3 and the vectors a, b, c  are not translational 

vectors. Thus in order for an assembly of atoms to be defined as crystal structure, it must be 

possible to find three translational vectors a,b,c which satisfies (2) such that r′ is identical to r. 

In other words, we can say that if no a, b, c exist according to the above prescription, the 

assembly cannot be classified to be a crystal. These translation vectors a, b, c are often called 

as crystal axes or basis vectors. 

      Now, with reference to a given crystal there may be many ways of choosing these 

translation vectors. However, a1 and b1 are such that every identical point in the crystal can be 

reached by an application of the translational operation 

T=a1n1+b1n2 

With some combination of n1 and n2. For example, we can get p, from p by using the 

operation T=0.a1+1.b1 and can write 

P
,
=P+0.a1+1.b1. 

 Such translation vectors are called the primitive translation vectors. On the other hand, 

the vectors a2 and b2 cannot do it.  When we try to do it using a2 and b2 we get 

P,=P+
1
2

a2+
1
2

b2 .

 

But this involves non-integer  coefficients of a2 and b2 and thus is not in accord with the 

periodicity of the crystal. Such axes are called the non-primitive translation vectors. For the 

description  of the crystal structures either type of the translational vectors may be used. 

Usually, one which is orthogonal is convenient, specially for calculating purposes. Further, 

they must be shortest in length. Keeping these factors in mind, the vectors a2 and b2 are 

regarded as convenient for the description of the lattice. 

Basis and Crystal structure 

In a perfect crystal there is a regular arrangement  of atoms and the atomic arrangement in a 

crystal is called the crystal structure. The points in the space  about which these atoms, ions 

or molecules are located and such points in space are called lattice points. The group of lattice 

points in a three dimensional pattern is known as crystal lattice or space lattice. In crystal 
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lattice every point has its surroundings, identical to that of every other point. If all the atoms , 

molecules or ions at the lattice  points are identical, then the lattice is called a Bravais lattice 

The space lattice has been defined as an array of imaginary points that are arranged in space 

so that each points has identical surroundings. Thus in order to obtain a crystal structure an 

atom or group of atoms must be placed on each lattice points  in a regular manner. Such an 

atom or group of atoms is called the basis and this acts as a building unit or a structural  unit 

for the complete crystal structure. Obviously a lattice combined with a basis generates the 

crystal structure. This means there is an infinite number of basis-lattice combinations that 

describe the same crystal structure.  

                       Space lattice + basis  ----→  Crystal structure. 

 

 

  

     

 

 

                      

                            Figure:  Crystal structure from lattice and basis 

Primitive Lattice Cell 

In describing crystal structures, it is convenient to divide the structure into repetitive building 

blocks  called unit cells. Obviously a unit cell is the smallest component  of the space lattice. 

The unit cell is defined as the smallest block of a geometrical figure, repeating again and 

again in a space lattice in the entire  three dimensions, so as to build the whole crystal. A unit 

cell is described by the length a,b,and c  called as translational vectors and the angles 

subtended by the lengths α,β  and γ  called as interfacial angles.  
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                  Figure: Lattice parameters of unit cell 

If the values of  translational vectors and   interfacial angles are known, we can easily 

determine the actual size of the unit cell. 

The unit cell that contains one lattice points only at their corners is called as primitive cell. 

The unit cell that contain more than one lattice point are called non primitive cells . The unit 

cells may be primitive cells but all the primitive cells are not unit cells.  A unit cell formed 

using the primitive lattice vectors as sides is called a primitive unit cell.  It can be shown that 

the volumes of all primitive unit cells are the same and the smallest among all possible unit 

cells.  

Two-Dimensional Lattices 

 There are five types of two dimensional lattice . They are 

1) Oblique lattice  ; a ≠ b  , θ≠ 90
0
 

2) Square lattice ; a=b  ,  θ=90
0
 

3) Rectangular lattice  ;  a ≠ b, θ=90
0
 

4) centered-rectangular ;  a ≠ b, θ=90
0
    with center of the atom 

5) Hexagonal lttice ;   a=b  ,  θ=120
0
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                                               Figure : Two dimensional lattices 

 

Three-Dimensional Bravais lattices 

 If all the atoms at the lattice points are identical, the lattice is said to be Bravais lattice. The 

seven classes of crystal lattices consists of 14 types of unit cells that are called as bravais 

lattice in three dimensions. In three dimensions the picture becomes complicated due to 

additional symmetry elements and due to the added dimensionality itself. The thirty-two 

permitted crystal point groups require fourteen different space lattices or Bravais lattices. The 

lattices are grouped into seven systems according to certain specifications about the lengths 

of edges and angles between them of a convenient unit cell. These  fourteen Bravais lattices 

with seven crystal systems and these are illustrated in figures.  
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1.  Cubic system 

       i) Simple cubic        

      ii) Face centerd cubic    

iii) Body centered cubic 

 

 

2. Tetragonal system   (a≠ c)              

             i) Tetragonal simple 

            i) Tetragonal simple 

     ii) Tetragonal body 

        

 

                                                       

 3. Orthorhombic system (a≠ b≠ c) 

    i) Orthorhombic  simple      

     ii) Orthorhombic  body 

    iii) Orthorhombic base 

   iv) Orthorhombic face                                                    
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4.  Monoclinic system(α=β=90
0
)                   

    i)  Monoclinic simple       

   ii)  Monoclinic base 

 

 

 

5. Triclinic simple ( γ≠ 900
 ) 

 

 

 

 

6.Rhombohedral simple(α=β=γ≠ 900
)   

 

 

 

7. Hexagonal   
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Crystals Planes and Miller Indices 

A crystal lattice is considered as a collection of a set of parallel equidistant planes passing 

through lattice points. These planes are known as lattice planes or crystal planes.  

 

 

 

 

 

 

 

 

                                                                           

                                     Figure: Crystal Planes 

 

Miller evolved a method to designate a set of parallel planes in a crystal by three numbers h, 

k and ℓ usually written within brackets and thus (h,k,ℓ) is known as Miller indices. Miller 

indices are three possible integers that have the same ratios as the reciprocals of the intercepts  

on the three axes. 

 Procedure for finding Miller indices 

1. Take any atom as the origin in the crystal and erect co-ordinate axes from this atom 

in the directions of the basis vectors. The axes may be primitive or non-primitive. 

2. Choose one plane of the set of interest and note its intercepts on the axes a,b,c in 

terms of the lattice constants. The plane must be chosen so that no intercept is at 

the origin.  Since all the parallel planes are exactly alike, it is convenient always to 

consider the plane nearest to the origin. 
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3. Take the reciprocals of these intercepts and convert these into the smallest set of 

integers that can be obtained by multiplying each of the fractions by the same 

number. 

The result is conventionally enclosed in parenthesis (h,k,ℓ). By taking reciprocals, we 

bring all the planes inside a single unit cell, so that we can discuss all crystal planes in terms 

of planes passing through a single unit cell. The fractions are converted into smallest set of 

integers for convenience. The following examples illustrate these steps: 

 

 

 

 

 

 

The figure, shows a plane whose intercepts are 1a,1b,1c. The Miller indices of the 

family to which this plane belongs are obtained by taking the reciprocals of these 

numbers:
1

1

1

1

1

1
,, ; and reducing to the smallest set of integers. This can be done by multiplying 

each of the reciprocals by 1 in this case, giving 1,1,1. Thus the Miller indices of this plane are 

(1 1 1) plane. 
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If an intercept is at infinity i.e. the plane is parallel to one of the co-ordinate axis the 

corresponding index is zero. This is clearly understood by obtaining the Miller indices of a 

plane shown in figure. Here       

 Intercepts       :  ½ a , a , ∞  

 Reciprocals    :    ½ , 1 , ∞  

Indices            :  (210)  

Thus, the plane is a (2 1 0) plane. If a plane cuts an axis on the negative side of the 

origin, the corresponding index is negative and is indicated by placing a minus sign above the 

index :(h,k,ℓ).  

   Simple Crystal Structures 

 The three dimensional crystal structures are obtained by arranging the different atomic 

planes one above the other. The different methods of arrangements of the atomic planes give 

rise to different structures.   

Cubic crystal structure is the simplest of the crystal structures. Cubic crystal system 

contains three Bravais lattices namely simple cubic (sc), body centered cubic (bcc) and face 

centered cubic(fcc) 

Simple Cubic (sc) Structure 

 

 

 

 

 

    Figure: a) Simple cubic structure                            b) Atomic radius of SC structure 

The simple cubic structure is the simplest and easiest crystal structure. Simple cubic 

structure is shown in the figure. We observe that this cell contains atoms only at the eight 

corners and thus there is only one atom associated with this cell. These atoms touch along the 

cube edges. 
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         Assuming the atoms as the hard spheres, the radius in a close packing is 

  ar
2

1
 , and the packing factor (f) is the ratio of the Volume of atoms in the unit cell and the 

Volume of unit cell ie., 
0.523

4

3
=

a

πr

=f

3

 

Thus, 52% of the volume is occupied by the atom and the remaining 48% volume is vacant.  

Face-Centered Cubic (fcc) Structure 

 In face centered cubic structure the unit cell contains one atom at each of its corners and 

one atom each of its six faces. Thus there are eight corner atoms and six face centered atoms. 

However the atoms are in contact with the diagonal atoms. In fcc structure each corner of the 

unit cell contains one atom and each face contains one atom. Thus there are eight corner 

atoms and six face centered atoms. In this case the nearest neighbours of any corner atoms 

are the face centered atoms of the surrounding unit cells. Any corner atom has four such 

atoms in its own plane four in a plane above it and four in a plane below it, thus the 

coordination number of the fcc 

structure is twelve. 

 

 

 

 

Figure: a) face centered structure     b)unit cell of fcc          c) Atomic radius of fcc structure      

 

 

With reference to the above discussion, let us now consider the structure which is formed 

when the third layer is added to the stacking sequence AB in such a way that its atoms are in 

positions corresponding to C; that is, in the positions which are neither directly above those 

of layer A nor those of layer B. In this case the stacking sequence is thus ABCABC… This 

structure has cubic symmetry, the successive layers being (111) planes. A unit cell of this 
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structure is shown in fig.  We observe that in addition to the atoms at the eight corners, there 

are also atoms at the six face centers of this cubic cell: hence the name face-centered cubic 

(fcc). Now, since a corner atom is shared among eight cells which touch there and a face-

centered atom is shared between two cells, there are 8 4
2

1
6

8

1
=+  atoms associated with this 

cell. From this we conclude that this cell is a non-primitive one because for simple structures 

containing atoms of one kind only, the primitive cell usually contains only one atom. The 

primitive cell for this structure is a 60 °  rhombohedra as is illustrated by the heavy drawing 

in the figure. It contains atoms only at the corners and thus there is only one atom associated 

with it. 

Assuming them to be the hard spheres, the radius in a close packing is then determined by the 

condition.   (4r)
 2 

=2a
2
 

  Therefore,      r  =   2a
4

1
 (4r = length of face diagonal).  

In fcc structure each corner of the unit cell contains one atom and each face of the unit cell 

there is an atom. Thus there are eight corner atoms and six face centered atoms. We find that 

each corner atom is common to the corners of eight unit cells. So the contribution of each 

corner atom to a particular unit cell is only 1/8. As there are eight corner atoms in a unit cell 

the contribution of number of corner atoms per unit cell is 18
8

1
=x  Each face atom is 

common to the face of two unit cells. So the contribution of each face atom to a particular 

unit cell is only ½   . As there are six face atoms in a unit cell, contribution of the number of 

face per unit cell is  36
2

1
=x . Hence the number of atoms per unit cell for face centred cubic 

structure = 1+3 = 4 

Packing fraction = Volume of atoms in the unit cell / Volume of unit cell             

The packing fraction in this case is  0.743

4
4.

3
=

a

πr

=f

3

 

  



14 

Thus the packing fraction of fcc structure is 74%. It means that only 74% of the unit cell is 

packed with atoms and remaining 26% is vacant and hence this structure is closely packed. 

Copper, Aluminium are fcc structure. 

Body-Centered Cubic (bcc) Structure 

 Many elements possess structures which are not close  packed in the above sense; they 

have loosely packed instead. One of these is the body centered cubic structure, the unit cell 

(conventional) of which is sketched in fig. We observe that in addition to the atoms at the 

eight corners, there is also an atom at the body center of this cubic cell; hence the name body-

centered cubic (bcc). Now, since corner atom is shared among eight cells which touch there 

and the body centered atom belongs exclusively to the cell under consideration. So the 

contribution of each corner atom to a particular unit cell is only 
8

1
. As there are eight corner 

atoms in a unit cell the contribution of number of corner atoms per unit cell is 18
8

1
=x . In 

body centered cubic structure there is a body centered atom meant of each unit cell. Hence 

the number of atoms per unit cell for body 

centered cubic 

structure = 1+1=2   

 

 

 

 

 Figure: a) body centered structure            b) Atomic radius of bcc structure      

 

Each atom in the structure has only 8 nearest neighbours i.e. the coordination number of the 

structure is 8 and the structure is thus loosely packed. The looseness of the structure can be 

envisioned easily. Assuming the atoms as the hard spheres, their radius in a close packing is 
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determined by the condition i.e. r = 3a.
4

1
 Here 4r is the length of body diagonal. Thus 

packing fraction 0.683

4
2.

3
=

a

πr

=f

3

 

Thus the packing fraction of bcc structure is 68%. It means that only 68% of the unit cell is 

packed with atoms and remaining 32% is vacant and hence this structure is closely packed. 

The alkali and many of the alkaline-earth metals crystallize the bcc structure. 

Sodium chloride ( NaCl) structure  

 NaCl is an ionic  crystal. In the  NaCl lattice Na and Cl ions are  situated side by side. It 

consists of 2 fcc sublattices. One of the Cl  ion having its origin at (0,0,0) and the other of Na 

ions having  origin at   (
2

a
,0,0). Each ions in NaCl  lattice has 6 nearest neighbour ion at a 

distance 
2

a
. That is the coordination number is 6. Each unit cell is NaCl  has 4 Na  ions  and 

4 Cl ions. Thus there are 4 molecules in each unit cell. The unit cell of NaCl cubic structure is  

shown in the figure. 

        This structure, thus, may also be considered as composed of the two types of ions 

arranged alternately at the lattice points of a simple cubic lattice. In crystal each ion is 

surrounded by six nearest neighbours of the opposite kind (co-ordination number =6) and 

twelve nearest neighbours of the same kind as the reference ion.  

 To find the number of Na+ and Cl- ions per unit cell :  

      We have 2 types of Na+ ions . They are midpoint Na+ ions and Body centered Na+ ions.  

Each Na+ ions situated at the midpoint of the axial length is shared by 4 unit cells. 

 We have 12 mid points Na+ ions. Number of midpoint Na+ ions per unit cell= 312
4

1
=x  

Each body centered Na+ ions is shared by the particular unit cell alone.  

 



16 

 

 

 

 

 

 

 

 

 

                              Figure : Sodium Chloride Crystal structure 

 

   Therefore number of body centered Na+ ions per unit cell =1  

 Therefore total  number of Na+ per unit cell = 3+1=4                   

 We have 2 types of Cl -  ions.   They are corner Cl- ions  and  face centered Cl- ions. 

Each corner is shared by 8 unit cell= 

1

8
x8= 1

 

Each face centered Chlorine ions shared by two unit cell , we have a fcc ions. 

Number of face centered Cl ions per unit cell =  

1

2
x6= 3

 

Total number of chlorine ions per unit cell = 1+3=4 

thus there are 4 Na+ ions and 4 Cl- ions in the NaCl unit cell.  

That is 4  NaCl molecules per unit cell 
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Cesium Chloride (CsCl) Structure 

 

 

 

 

 

 

 

 

 

                                        Figure : Cesium Chloride Crystal structure 

The space lattice of CsCl is simple cubic. Cs+ and Cl 
– 

 have approximately same size. CsCl 

crystal consists of two inter penetrating simple cubic lattice. The cesium chloride structure is 

shown in figure. This structure may be considered as resulting from the combination of two 

simple cubic sub lattices, one of Cs ions and the other of CI ions, disposed such that a corner 

of one sub lattice is the body center of the other. The space lattice is therefore actually simple 

cubic with a basis of one Cs ion at (0, 0, 0) and one CI ion at (
2

1

2

1

2

1
,,  )  is separated by one-

half of the body diagonal of the unit cube. There is only one molecule per unit cell. Each ion 

at the centre of a cube of ions of the opposite kind. 

One sub lattice is occupied by Cs
+
 and the other by Cl 

–
 ion, hence each Cs

+
 ion has  

8 nearest Cl 
–
 

  That is the coordination number of this structure = 8. The Cl 
–
 ions are situated at all the 

eight corners to form a simple cubic arrangement. Cs
+
 ion occupies cubic size. Number of 

Cs
+
 ions and Cl 

–  
ions per unit cell is 1. 
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Unit II:  Dielectric Properties: 

Local Field – Clausius - Mossotti Relation – Polarizability - Electronic  Polarizability – Ionic 

Polarizability – Orientational Polarizability – Dielectric Constant – Frequency Dependence Of 

Dielectric Constant - Measurement Of Dielectric Constant – Ferro Electricity – Hysteresis – 

Piezoelectricity-Superconductivity:  

 

Local field (or) Internal field  

 

 

 

 

 

    

                                 Figure : Local field 

   When  a dielectric is placed between the plates of a parallel plate capacitor and let there be 

an imaginary spherical cavity around the atom inside the dielectric. The electric field 

experienced by the atom is called as internal field.  

  Glass, mica and paraffin paper are examples of dielectric material. Dielectric materials are 

insulators in which electric charge does not flow. There are no free electrons to move in the   

material.  The electric field acting at an atom in a dielectric material is known as the local 

field or internal field E1, which  is different has applied external field E.  

             Let a dielectric be placed between the plates of a parallel plate capacitor. To evaluate 

the local field it is necessary to calculate the total field acting on an atom A. Imagine a 

spherical cavity surrounded by the atom A inside the dielectric material. It is assumed that the 

radius of the spherical cavity is sufficiently larger than the radius of the atom. 

The internal field at the atom A is made up of the four components E1,E2,E3,E4. 

E1 is the field intensity at A due to the charge on the plates. 
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   From the field theory  E1 = D/ ε0 but D= P+  ε0 E 

   where D is the displacement vector 

                            E1= (P+  ε0 E)/ ε0  = P/ ε0 +E        

                            ie. E1  = E+  P/ ε0    

E2  is the field intensity at A due to the charge induced on the two sides of the   dielectric 

material. 

               E2 = - P/ ε0   

 E3 is the field intensity at A due to the  other atoms in the  imaginary cavity. Because of the 

symmetry  E3 =0 

E4 is the field intensity at A  produced by the polarization charges on the cavity surface. 

          E =  P/  3ε0  

 Therefore  the total internal field  E i  =  E1 +E2+E3+E4. 

E i  = E+  P/ ε0  +  - P/ ε0     +   0  +  P/  3ε0  

E i  = E+  P/  3ε0  

 

 Derivation of the Clausius – Mossotti   relation 

                  The Clausius-Mosotti equation is applicable only to dielectric materials like 

germanium, silicon and carbon which have cubic structure. In these materials, there are no 

ions and no permanent dipoles and so the ionic polarization and orientation are zero. That is 

                                 α i = α0  = 0  

 The total polarization vector P= N αeE i  ----------------- (1) 

 Where N is the number of molecules per unit volume.  αe    is the  electronic polarizability 

and   E i  the internal field.  

   But,   E i  = E+  P/  3ε0        ------------------    (2) 
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   where  ε0 is the permittivity of free space . 

Substituting equation (2) in (1)  

P=  N αe ( E+  P/  3ε0 ) 

    = N αe E +  N αe  P/ 3ε0 

P -  N αe  P/ 3ε0     =   N αe E 

P ( 1 -  N αe / 3ε0 ) =  N αe E 

P= N αe E / (1 -  N αe / 3ε0  )   ----------------------------------- (3) 

 We know that , Electric field density D= ε0E+P -------------- (4)  

 Therefore P= D-  ε0E 

 P/E = (D-  ε0E)/E 

 P/E = D/E-  ε0 

  P/E  =    ε -  ε0     ( where   ε  = D/E) 

          = ε0 εr -  ε0       ( where   ε  = ε0 εr) 

          =  ε0 ( εr - 1)  

From this  P=  ε0 ( εr - 1) E  --------(5) 

 From equations (3) and (5)  

    ε0 ( εr - 1) E =  N αe E / (1 -  N αe / 3ε0  ) 

  ε0 ( εr - 1)  =  N αe  / (1 -  N αe / 3ε0  ) 

  (1 -  N αe / 3ε0  )=    N αe / [ ε0 ( εr - 1) ] 

 1 =   N αe / 3ε0  [1+3/( εr – 1)] 

3ε0  / N αe  =  [  εr – 1+3] /  [  εr – 1] 

[  εr – 1] / [  εr + 2] =  N αe  /  3ε0    ------------------------  (6)  
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 This equation is known as Clausius -Mossotti equation. By knowing the value of   εr , we can 

determine the value of eletronic polarizability, αe  of the material. 

 

 
  032

1



 eN
=

+εr

–εr

 

Polarizability 

               The  polarizability is the relative tendency of a charge distribution, like the electron  

cloud  of an  atom or molecule, and consequently of any material body, to have its charges 

displaced by any external  electric field.  

 When a dielectric material is placed in an external electric field E0 the positive and 

negative charges are displaced from their equilibrium positions by very small distances 

throughout the volume of the dielectric. This phenomenon is called polarization.  This results  

the formation of a large number of dipoles each having same dipole moment in the direction 

of the field.  The material is said to be polarized with a Polarization P. 

 The polarization P is defined as the dipole moment per unit volume, averaged over the 

volume of a cell. 

 The effect of polarization is to reduce the magnitude of the external field E0.  Thus the 

magnitude of the resultant field is less than the applied field, i.e., E < E0. 

 We may write E = E0 + E1 

 The field E1 is called the depolarization field, for within the body it tends to oppose the 

applied field E0.  For ordinary electric fields, the polarization P is proportional to the 

macroscopic field E.  It is expressed as P = ε0 χ e E 

Here, χ e is the electric susceptibility. 

The electric displacement vector D for an isotropic or cubic medium is defined as  

D = ε0 εr E  =  ε0 E + P 

Here, εr, is the relative permittivity or dielectric constant of the dielectric.  εr is related to the 

electric susceptibility as εr = 1 + χ e 
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 The physical quantities of primary interest are the field vectors E and D, the polarization 

P, together with the electric susceptibility χe and dielectric constant εr. 

                 D = ε0E+P 

 

Polarization 

When a dielectric material is subjected to an electric field the positive charges of the material 

are displaced in the direction of the field while the negative charges are displaced in the 

opposite direction. This displacement produces local dipoles throughout the material. Thus 

the process of producing dipoles by an application of the electric field in a material is called 

polarization in the material. The different types of polarization are  

i) Electronic polarization 

ii) Ionic polarization 

iii) Orientational polarization 

iv) Space Charge polarization 

 

i) Electronic polarization 

     Consider a dielectric material. Let Ze is the charge of nucleus and electrons cloud of 

charge     -Ze is distributed in a space of radius R. The charge density  ρ is given by  

ρ= 
Volume

Charge
                               

ρ= 
3

2

πR

ze

3/4


                     -------------------------- (1) 

When an external electric field of intensity E is applied , the nucleus and electron experienced 

a Lorentz force -Ze E. Due to this force the nucleus and electron cloud are pulled out . But a 

Coulomb force is developed between them, which attracts the nucleus and electron cloud.  At 

equilibrium the two forces are equal and opposite .  
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Lorentz force  = Ze E 

Coulomb's force=   
3

21

4 xπε

qq

0

     ------------------------   (2)  

Where x is the distance between nucleus and the electron cloud. 

Here q1 = Ze 

q2 = volume x charge density   =    4 /3πx
3

. ρ  

 using equation (1)  q2     =   
3πx3/4 . 3

2

πR

ze

3/4


      

                                  q2    =  
3R

zex 3
                           

          Substituting  the value of q1   and  q2  (2)  we get the      

                        Coulomb's force =  
3

22

4 Rπε

xez

0


                

    At equilibrium Lorentz force is equal to Coulomb' force 
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         Therefore    
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E
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 Now the induced dipole moment    
Ze

ERπε
ZeZex 0

e

34
  

      μ e  =  4π ε0R
3
E 

μ e = e E 


e = 4π ε0R

3
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Which is the electronic polarizability. It is independent of temperature. Electronic 

polarization occurs in all materials. The atoms undergo electric strain when they are placed in 

an electric field. Then there is a displacement of a positively charged nucleus and the 

negatively charged electrons of the atom in opposite directions. When we apply the field  the 

electrons around the nucleus shifts towards the positive end of the field. 

ii) lonic polarization 

 The ionic polarizability is due to the  shift of positive and negative ions in opposite 

direction, when an ionic solid is placed in an electric field. 

 Ionic polarization is also independent of temperature. The ionic polarizability ( 1) is 

inversely proportional to the square of the natural frequency of the ionic molecule and to its 

reduce mass.  

Suppose an electric field is applied in the positive x-direction of an ionic solid. Then the 

positive ions move to the right by a distance x1 and the negative ions move to the left by a 

distance x2.  The resultant dipole moment per unit cell due to ionic displacement is given by.  

μ = e(x1 + x2)    ----------------------- (1)  

 If β1  and  β2 are the restoring force constants of cation and anion and F is the force  

acting  on  the  ions due  to the applied  electric field  

 Then,  F =β1  x1 = β2 x2 

  x1 = 
1β

F
and x2 = 

2


F
 

 If      ω0 is  the angular frequency of the molecule then    β1 = 
2

0mω                   

and β2 = 
2

0mω , the above equation can be rewritten as  

 x1 = 2

0
m

eE
    and    x2 = 

2

0Mω

eE
 

Where M is the mass of positive ion, m is the mass of negative ion and ω0 is the angular 

frequency of the molecules in which the ions are present.  
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=
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 Thus the ionic polarizability is inversely proportional to the square of the natural 

frequency of the ionic molecule and to its reduced mass.  

iii) Orientational polarization  

 

 

 

 

 

  

                             Figure: Orientational Polarization 

Orientational polarization occurs mainly in liquids, which contain permanent dipoles. These 

are called non-polar molecules. But in molecules positive and negative charges do not 

coincide so that the molecules carry dipole moment even in the absence of external electric 

field. 

 These are called polar molecules. When an external electric field is applied on such 

molecules they tend to align themselves in the direction of applied field.  This is called as 

Orientational polarization. The orientation polarization is inversely proportional to the 

absolute temperature of the material. Orientational   polarizability α 0 can be shown to be 

equal to μ
2
/3kT. 

  Thus the orientation polarizability is inversely proportional to the temperature. 
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iv) Space charge polarization 

 

 

 

 

 

                               Figure : Space charge polarization 

Space charge polarization occurs due to accumulation of charges at the electrodes or at the 

interfaces of multiphase dielectrics. This is possible when one of the phases present has much 

higher resistivity than the other. Space charge polarization is the slowest process as it 

involves the diffusion of ions over several interatomic distances. This kind of polarization is 

found in ferrites, semiconductors and also in composite insulators when they are heated to 

higher temperature. 

The total polarizability  

 The total polarizability  of the material  can be written as  α   = α
e + α

i+
α

s+
α

o 

Compared to all  other polarizabilities space charge polarizability is very small and so it is 

omitted in the calculation of total polarizability                                          

                                            = 4πε0R
2
 + 









M

l
+

m

l

ω

e
2

0

2

 + 
kT

μ 2

3
      

This equation is known as Langavin- Debye equation .    
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Dielectric Constant 

Dielectric materials are insulators.  A dielectric is a material in which all the electrons are 

tightly bound to the nuclei of an atom. Thus there are no free electrons to carry current. 

Hence the electrical conductivity of a dielectric is very low.  The conductivity of the ideal 

dielectric is zero. Glass, plastic, mica ,oil are examples of dielectrics. 

 The molecules of dielectrics are classified as nonpolar and polar. 

          A non polar molecule is one in which the centre of gravity of the positive charges 

(protons) coincides with the centre of gravity of the negative charges (electrons). The 

nonpolar molecules have symmetrical structure and zero electric dipole moment. Examples 

are H2,N2,O2,CO2, benzene  etc.  

     A polar molecules is one in which the centre of gravity of the positive charges is separated 

from the centre of gravity of the negative charges by infinite distance. The polar molecule is 

thus an electric dipole and has an intrinsic permanent dipole moment.  Examples are H 2O, 

HCl, CO,     N 2O,  NH3 etc. 

    The dielectric characteristics of a material are determined by the dielectric constant or 

relative permittivity εr  of that material . It is the ratio between the permittivity of the medium 

and the permittivity of free space. 

  The electric displacement vector for an isotropic or cubic medium can be defined as  

D = ε0 εr E =    ε0 E + P   ……1 

 Here, εr is called the relative permittivity or dielectric constant of the dielectric. 

 e+=
Eε

P+Eε
=εr 1

0

0
 

 The susceptibility is related to the dielectric constant by 

 1
0


Eε

P
=e  
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Frequency dependence of total polarizability 

  When an electric field is applied on a dielectric material, polarization process occurs as a 

function of time.  

 P(t) = P0 [ 1-  e 
-t/tr   

]   where  P0   is the maximum polarization and tr is the relaxation time. It 

is the time taken for a polarization process to reach 0.63 of the maximum value.  

Electronic polarization is extremely rapid and is complete immediately the voltage is applied. 

Even when the frequency of the applied voltage is very high in the optical range 10
5 

Hertz, 

electronic polarization occurs during every cycle of the applied voltage. So the electronic 

polarization is  sometimes called as  optical polarization. 

  Ionic polarization is slower than electronic polarization as the displacement involved here is 

for the much heavier ions as compared to the electron cloud in the electronic polarization. 

The frequency with which ions can be displaced over a small interatomic distance will be of 

the order of lattice vibration frequency 10
3 

Hertz. The ionic polarization occurs at the 

frequency of the applied voltage in the infrared range 

 Orientational polarization is slower than ionic polarization. Orientaional polarization occurs 

when the frequency of the applied voltage is in the audio range 10
4
 Hertz. 

   

 

 

 

 

 

                            Figure: Frequency dependence of Polarizability 
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 Space charge polarization is the slowest process as it involves the diffusion ions over several 

interatomic distances.  Space charge polarization occurs at power frequencies 50 hertz. 

Determination of dielectric constant                      

 To measure the dielectric constant we use a high voltage bridge called Schering bridge. 

The bridge consist of four arms as shown in the diagram. 

The first arm consists of a resistance r1 connected in series with the capacitor C1, the second 

arm has non inductive variable resistance R3, the third arm has a variable capacitance C4 and 

resistance R4 connected in parallel and the fourth arm is connected with a standard capacitor 

C2, N is the ac null detector and S is the high frequency oscillator. 

Principle:  First without the dielectric slab we measure the capacity of the capacitor in arm 1 

as C1. Then we introduce the dielectric slab in between the plates of the capacitor C1 and 

measure the capacity as C1'  . The Dielectric constant  εr =   
1

1

1

C

C
        

Experiment Theory: Without the dielectric slab inside C1   balance the bridge by adjusting 

R3 and C4 . Under null deflection condition we have   
Q

P
=

S

R
    

P= resistance in arm 1 = 
1

1

Cj
 

Q= resistance in arm 2 =   1
1

2

r
Cj




     

R= Resistance in arm 3  = R3 

 

                                                                                                                           Figure:  Schering bridge 
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S= Resistance in arm 4 =  

4

4

4

4

1

1

R
Cj

R
Cj





 

  Since   
444

1

/1

1

RCj
=

Z

l



   

   
4

44

1

R
CjZ    

The first part of the experiment should be carried out without inserting dielectric material 

inside the capacitor C1 and the balance should be obtained by adjusting C4 and R3, When the 

current flowing through the detector becomes zero, then  

S

R

Q

P
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4

3

2

1

1

1

1

CRj

R

R

Cj

Cj
r













 

 Equating real and imaginary parts we get  

 r1 = 
C

4
R

3

C
2

 and C1 = 
R4

R3

.C2  

Since R4 and C2 are fixed, the dial of R3 is calibrated to read the capacitance directly.   

 The second part of the experiment is carried out, by inserting the dielectric specimen 

between the plates of capacitor C1. Once again the bridge is balanced. Now the dial reading in 

R3 will directly give the value of the new capacitance C 1

'

 

 The dielectric constant of the specimen r

'

ε=
C

C

1

1  

 The dielectric constant value at different frequencies can be determined by varying the 

frequency of the oscillator. 
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Ferroelectricity  

The ferroelectric effect is an electrical phenomenon where by certain materials exhibit a 

spontaneous dipole moment even in the absence of an applied field. The dielectric materials 

which exhibit electric polarization  in the absence of an applied electric field are known  as  

ferroelectric materials.  

Examples of ferroelectric substances are Rochelle salt and Barium titanate. In the absence of 

any field , ferromagnetic crystals has an electric dipole moment ie. permanent polarization.  

This means that in ferroelectric state the centre of positive charge of the crystal does not 

coincides with the negative charge. 

 Under the action of electric field, the displacement of centers of positive and negative charge 

occurs. The polarization associated with the displacement creates in the internal field. The 

internal field  both increases and stabilizes the polarization. So a part of polarization exists 

even if the field is removed. 

 The dielectric constants of these materials are very large compared to ordinary dielectric 

materials. For dielectric materials the polarization is a linear function of applied electric field 

but for ferroelectric materials polarization is non linear function of applied field.  

In ferroelectric material the polarization can be changed and even reversed by an external 

electric field and becomes non polarized. If the  non polarized  ferroelectric crystal is heated  

above a critical temperature it becomes stable and this temperature is called as Curie 

temperature.  The crystal undergoes a phase transition from the polarized phase (ferroelectric 

phase) into unpolarized phase ( paraelectric phase) 

Hysteris Loop 

If a ferroelectric material is subjected to an applied electric field from zero, the polarization 

increases rapidly as shown in the curve OA. If the electric field strength further increased, the 

rate of polarization increases until saturation is reached as shown by the curve AB in the 

figure. If the electric field strength is reversed to zero, the polarization decreases along the 

curve BAD and does not become zero. The value of the polarization represented by OC, 

which present in the material even when the external electric field is zero is known as 

remnant polarization. In order to make the polarization zero, a certain value of the  electric 

field strength is to be applied in the negative direction known as Coercive field . The electric 
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field strength is further increased in a negative direction so that the reverse polarization 

increases rapidly until the saturation is reached E. If the electric field strength is  again 

reversed to make it positive, polarization will follow the curve EFGB as shown in the figure.  

In the figure ABCDEFGB is called as Hysteresis loop. 

 

 

 

 

 

 

 

When the temperature increases the height of the loop decreases slightly but width decreases 

considerably until it becomes a straight line. The temperature at which the loop reduces to 

straight line is known as Curie temperature. Above this temperature polarization of the 

ferroelectric material vanishes 

 Piezoelectric effect  

 When a dielectric crystal is subjected to a mechanical pressure, electricity is produced. 

This phenomenon is called piezoelectric effect and the electricity produced is known as 

piezoelectricity.   According to inverse piezo electric effect when a voltage is applied, the 

material become strained. Conversely, an applied electric field can cause a piezoelectric 

material to change dimensions.   

 Piezoelectricity is the ability of certain crystals to generate voltage in response to 

applied mechanical stress. This property is used to convert mechanical energy into electrical 

energy and vice-versa(transducer). The word piezoelectric is derived from the Greek piezein 

which means to squeeze or press. The piezoelectric effect is reversible that the piezoelectric 

crystal can change shape by a small amount when subjected to an externally applied voltage.  

 In a piezoelectric crystal the positive and negative electrical charges are separated, but 

symmetrically distributed so that the crystal overall is electrically neutral. When a mechanical 
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stress is applied, this symmetry is disturbed and charge asymmetry generates voltage across 

the material. For example a 10
-2

 m cube of quartz with 2 kN of corresponding applied force 

on it, can produce a voltage of 12,500 V.  

 In a piezoelectric crystal, the polarization 'P' is related to mechanical stress 'T' or 

conversely the electric stress 'E' is related to the mechanical strain 'S'. Thus we can define a 

piezoelectric coefficient 'd' relating polarization to stress and strain to field by the equation.  

 
TE E

S
=

T

P
=d 
























 

 Where the suffix 'E' indicates that the field is held constant and the suffix T indicates that 

the mechanical stress is held constant. In other words the piezoelectric coefficient is given by 

the rate of change of polarization with mechanical stress at constant field or the rate of 

change of mechanical strain with field at constant electric stress. The units of 'd' are Coulomb 

per newton or meter per volt. 

             

Superconductivity 

         In certain substances when the temperature is reduced below a particular value the 

resistivity of the substance becomes zero. And hence the conductivity  becomes infinity. This 

property is called as superconductivity and such substances are called as superconductors. 

       Superconductivity was first observed in1911 by the Dutch physicist HK Onnes in the 

course of his experiments on the electrical conductivities of metals at low temperatures. He 

observed that as purified mercury is cooled, its resistivity vanished abruptly at 4.2 K. Above 

this temperature the resistivity is small, but finite, while the resistivity below this point is so 

small  that it is essentially zero. The temperature at which the transition takes place is called 

the critical temperature  (TC ). The temperature  (TC ) which marks the transition of a normal 

conductor to the superconducting state is defined as the transition temperature. Above the 

critical temperature  (TC ) the substance is   in the familiar normal state, but below (TC ) it 

enters an entirely  different superconducting state. The superconducting state is marked by a 

sudden fall of the electrical  resistivity of the material to nearly zero, which it is cooled to a 

sufficiently low temperature. 
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Unit III :   Statistical Mechanics 

Statistical Mechanics- probability- principle of equal a priori probability -microstate and 

macro state- thermodynamic probability -constrains on a system -static and dynamic systems -

most probable state (equilibrium state) -concept of a cell in a compartment -ensemble and 

average properties Degrees of freedom -position space -momentum space- phase space- the 

mu- space and gamma space 

 

Statistical Basis 

  The classical statistics successfully explained the phenomenon like temperature, 

pressure, energy etc.,  This is applicable to the identical, distinguishable particles of any spin. 

The molecules of a gas are particles of this kind. But failed to explain other observed 

phenomenon like black body radiation, specific heat at low temperature etc. For this, new 

approach was introduced by Bose, Einstein, Fermi and Dirac. The Planck‟s quantum concept 

of discrete exchange of energy between systems was used. The new statistics was subdivided 

into two categories (i) Bose-Einstein statistics and (ii) Fermi-Dirac statistics.  

 

Bose-Einstein statistics: This is applicable to the identical, indistinguishable particles of zero 

or integral spin. These particles are called bosons. The examples of bosons are helium 

atoms at low temperature and the photons. 

Fermi-Dirac statistics: This is applicable to the identical, indistinguishable particles of half-

integral spin. These particles obey Pauli Exclusion Principle and are called fermions. The 

examples of fermions are electrons, protons, neutrons etc. 

 

Probability 

The probability of an event may be defined as the ratio of the number of cases in 

which the event occurs to the total number of cases. 

 Thus, the probability of an event = Number of cases in which the event occurs / number 

of cases    
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 Suppose an event can happen in a ways and fails to happen in b ways, then the 

probability of happening the event= 
b+a

b
and the probability of failing the event= 

b+a

b
. 

Here (a+b) represents the total number of equally likely possible ways. It should be noted 

that the sum of these two probabilities is always 1, since the event must either occur or fail. 

 Thus, the probability of a „sure‟ event is assumed to be equal to 1 and of an impossible 

event to be equal to zero. Thus, the probability of a random event lies between 0 and 1, i.e.,   

      0 ≤ P ≤ 1 

 This is further explained by the following experiments: 

4. Throwing a coin: Suppose we toss a coin. Either the „head‟ can come upward or 

the „tail‟ i.e. an event can occur in a total number of two equally likely ways. The 

number of ways in which the „head‟ can come up is only one. Therefore, the 

probability that the „head‟ may come up is 
2

1
. Similarly, the probability that the 

„tail‟ may come up is also 
2

1
. 

5. Throwing a dice: A dice is a homogeneous, regular and balanced cube with six 

faces marked number of dots from 1 to 6 engraved on them. It is supposed that the 

die is symmetrical and cannot fall of its edges. When the die is thrown it falls one 

of its faces upwards i.e., yields one of the six results and no other. All outcomes 

are equally likely in a single throw of dice. Out of six possible results only one is 

favorable for the appearance of six spots. In other words, the probability of any 

one face (say with a number 3) to come up is 1/6. The set of all possible outcomes 

can be written as  

            S (1, 2, 3, 4, 5, 6). The probability of the dice coming up with an even number is          

                  3/6 as there are only three even numbers on the dice 2, 4, and 6. 

Therefore, P (even) =
2

1

6

3
       

           Likewise, the probability of the dice coming up with odd number is  
2

1

6

3
or    
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 The probability of the dice coming up with any number less than 6 is given by 

    P (a number less than 6) =
6

5
      

    as there are five numbers 1, 2, 3, 4, 5 which are less than 6. 

Zero probability: If we want to know the probability of the dice coming up with a face 

marked with a number 7. The die has only six faces marked serially from 1 to 6. There is no 

face marked as 7. Therefore, probability of appearing a number 7 is zero, i.e.,  

    Therefore, P (number 7) = 
6

0
 = 0   

 In other words, impossible event is always zero. 

Probability one: The probability of appearing any number less than 7 is one. This is because 

all the six faces of the die are marked from 1 to 6, i.e., the numbers less than 7. 

    P (number < 7) =  
6

6
 = 1 

Total probability: If a is the number of cases in which the event occurs and b the number of 

cases in which the event fails, then 

  Probability of occurrence of the event = 
b+a

a
 

       and Probability of failing the event    = 
b+a

b
 

 The sum i.e., the total probability is always one, since the event may either occur or fail. 

Principle of Equal a Priori Probability 

 Suppose we toss a coin it is clear in mind that the coin will fail either with its „head‟ up 

or „tail‟ up. Similarly if a six face cubical dice is thrown, it is sure that the dice will fall with 

one of its six faces upward. In the same way, if we have an open box divided into two equal 

sized compartments X and Y,  and a small particle is thrown from a large distance in such a 

way that it must fall in either of the two compartments, then the probability of the particle to 
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fall in the compartment  marked X is equal to the probability that it may fall into the 

compartment marked Y. again there is an equal probability. 

 

 

  

 

                                    Figure: equal sized compartments 

This probability of assuming equal probability for events which are equally likely to occur is 

known as the principle of equal a priori probability. 

  A priori means something which exists in our mind prior to and independently of the 

observations we are going to make. 

 This principle of equal a priori probability will not hold good, if in the above example, 

the two compartments are of unequal size. 

 The postulate of equal a priori probability is the fundamental basis of statistical 

mechanics. The basis for this postulate is provided by the ergodic hypothesis. According to 

the principle of conservation of density in phase space, the density of a group of phase points 

remains constant along their trajectories in a phase space. If at any time, the phase points are 

distributed uniformly in phase space, the phase point move in such a way that their density is 

uniform at all times. So the representative points move in the space in the same fashion as an 

incompressible fluid. For other spaces the density will range from region to region while 

there will be no change in phase space. This means, there is no crowding together of phase 

points in any particular region of phase space. The property of no crowding of phase points in 

any particular region of phase space bounded by a moving surface and containing a definite 

number of phase points does not change with time. The property of no crowding of phase 

points in any particular region of phase space and the constancy of volume element in phase-

space with time indicates the validity of postulate of equal a priori probability. 
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Macrostate and Microstate 

Macrostate:  Consider 4 distinguishable particles and we wish to distribute them into two 

similar compartments in an open box. Let the particles be a, b, c and d. When any particle 

thrown into the box, it must fall into one of the two compartments. Since the compartments 

are alike, the particles have the same a priori probability of going into either of them and will 

be ½. The possible ways in which 4 particles can be distributed in two compartments are 

shown in table. 

 Thus, there are 5 different distributions (0,4),(1,3),(2,2),(3,1), and (4,0). each 

compartment wise distribution of a system of particles is known as a macrostate. A system of 

n particles distributed in a similar compartment, the various macrostates  are (0,n),(1,n-

1),(2,n-2),….(n-1,n). Therefore the total number of macrostates for n particles is (n+1).  

Microstate: Since the particles are distinguishable, the number of different possible 

arrangements in each compartment is as shown below. 

Macrostate Possible arrangements Number of microstates      

(W) 

      Compartment1 Compartment 2  

0,4 0 abcd 1 

1,3 a 

b 

c 

d 

 

bcd 

cda 

dab 

abc 

 

 

4 

2,2 ab 

ac 

cd 

bd 
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ad 

bc 

bd 

cd 

bc 

ad 

ac 

ab 

6 

3,1 bcd 

cda 

dab 

ab 

a 

b 

c 

d 

4 

4,0 abcd 0 1 

 

Each distinct arrangement is known as microstate of the system. The distribution (0,4) has  

only one arrangement, distribution (3,1) has 4 distinct  arrangement , distribution (2,2) has 6,  

distribution (3,1) has 4 and (4,0) has only one. Thus a given macrostate may consists of a 

number of microstates.  In the above example of 4 particles, the total number of microstates is 

16=2
4. 

In general for a system of n particles, total number of microstates is 2
n. 

Thus  a given 

macrostate corresponds to many microstates and it is very natural to assume that at any time 

the system is equally likely to be in any of these microstates. 

 Thermodynamic Probability  

 The number of microstates corresponding to any given macrostate is called its 

thermodynamic probability.  In other words, the thermodynamic probability of a particular 

macrostate is defined as the number of microstates corresponding to that macrostate.  In 

general, this is a very large number and is represented by W. 

 The number of microstates corresponding to a given macrostate is equal to the number 

of meaningful arrangements or permutations of various particles in the macrostate excluding 

those permutations which are meaningless i.e. merely interchange the order of particles in a 

particular compartment (or cell).  For the case of n particles and two compartments (or cells), 
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if r is the number of particles in the compartment No. 1 and the remaining (n-r) are in 

compartment No. 2 then  

 No. of meaningful arrangements  = 
 !rnr!

n!


   =   r

nc  

 Therefore the number of microstates in a macrostate (r, n – r) or thermodynamic 

probability.  

  
W (r,n-r )=

n!

r!(n− r)!
= n cr

   ………….(1) 

 Applying this to a system of 4 distinguishable particles, for a macrostate (1,3), r = 1,  

    (n – r) = 3 and n = 4 the number of microstates.  

W (1,3 )=
4 !

1! 3!
= 4

 

 Similarly, for a macrostate (2,2), r = 2, (n – r) = 2 and n = 4 the thermodynamic 

probability i.e. no. of microstates will be  

 
W (2,2 )=

4 !

2! 2!
= 6

 

 The probability (or) occurrence of a macrostate us defined as the ratio of the number of 

microstates (i.e. thermodynamic probability W) in it to the total number of possible 

microstates of the system,  

 Thus ,  
system  theof states micro of no. Total

state macro in the states micro of No.
=Pmacro  ----(2) 

 The total number of ways of arranging n distinguishable particles in c numbered 

compartments = C 
n
 

 If there are only 2 compartments or cells, then the total no. of microstates of the system 

= 2
n
.  For 4 Particles system, total no. of microstates will be 2

n
= 16.  

 we get.   
nnmacro

W
=

C

W
=P

2
 

      Substituting W from eqn(1) 
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  r

n

nnr)-n ,(r c=x
!rnr!

n!
=P

2

1

2

1


               

This gives the probability of macrostate (r, n-r)          

Constraints on a System                                

 A set of conditions or restrictions that must be obeyed by a system are known as 

constraints. 

 Let us take an example of the distribution of 3 particles in two compartments; the system 

must obey the constraint that total number of particles in the two compartments must be 3.  In 

general, if there are N particles to be distributed in two compartments and there are n1 

particles in compartment no. 1 and n2 particles in compartment no. 2, then we must have  

n1+n1=N
 

This relation is known as equation of constraint on the system. 

A typical set of constraints is  

N=constant=ΣE  

E=constant=nΣE ii  

 Where n
i  is the number of particles (or molecules) in the ith compartment (or ith cell), 

Ei is the energy of each particle (or molecule) in the i
 th 

compartment (or  i
 th

 cell). 

Accessible states 

 Accessible states are the states consistent with the given constraints of the system.  

 Suppose we wish to distribute 3 particles in two compartments, The system has four 

macro and 8 microstates when particles are distinguishable and only four microstates when 

they are indistinguishable. If we put the constraint that no compartment should remain empty, 

then the macrostate (3, 0) and (0, 3) cannot exist.  The system will then have only two 

macrostates (2, 1) and (1, 2) with their corresponding microstates.  Thus, there will be only 

two macrostates and six microstates, when the particles are distinguishable, and only two 

microstates when they are indistinguishable. 
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Macrostate Microstates 

 Particles distinguishable Particles indistinguishable 

 Description Number Description Number 

3 ,0 (abc, 0) 1 (aaa, 0) 1 

2, 1 (ab, c) (bc, a), (ca, b) 3 (aa, a) 1 

1, 2 (c, ab), (a, bc), b, ac) 3 (A, aa) 1 

0, 3 0, abc) 1 (0, aaa) 1 

 

  Suppose again we put the constraint that the particles are indistinguishable, then we 

shall have four macrostates (3,0), (2,1), (1,2) and (0,3) but each macrostate will have only 

one microstate as shown in .  The total number of microstates will also be four. 

 Thus, the constraints decrease the number of macro as well as microstates of the system.   

Accessible macrostates: The macrostates which are allowed under a constraint are called 

accessible macrostates.  

For example, in distributing 3 particles in 2 compartments under the constraint that no 

compartment will remain empty, the only accessible macrostates are (2,1) and (1,2). 

Inaccessible macrostates: The macrostates which are not allowed under a constraint are 

called inaccessible macrostates.  

 In the above example, the macrostates (3,0) and 0,3) are inaccessible macrostates. 

Static and Dynamic Systems 

Static System: A system is said to be static of the constituent particles of the system remain 

at rest in a particular microstate.  

 In static system, the particles do not change their relative positions in the compartment 

in which they are located.  They do not move from one compartment to even the neighboring 

compartment.  In other words, the static systems do not change of their own due to internal 
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forces or the internal conditions.  However, the change in possible due to external forces or 

causes. 

 Whenever the change in static system takes place due to external causes or forces, the 

system from one macrostate to another macrostate.  The system now stays in the macrostate 

ever after the external cause of force is withdrawn. 

Example: A system of tossed coin is an example of static system.  After every toss, the coins 

remain permanently latched in the last state.  

Dynamic system: A system is said to be dynamic if the constituent particles of the system 

can move so that the system goes from one microstate to another. 

 The particles of the dynamic system change their relative positions within the 

compartment in which they are.  They also go from one compartment to another.  Thus, both 

the micro as well as macrostates of the system change with time.  Dynamic systems can 

change of their own due to internal causes or forces.  They can also undergo changes due to 

external causes or forces affecting. 

Example: Any gas is an example of dynamic system.  The molecules of gas are always in 

constant, random motion, continuously colliding with one another, following Brownian 

motion.  During this, they change their position, momentum and energy continuously. 

 If the dynamic system is disturbed by some external causes or forces and then left to 

itself the system tends to approach the macrostate with maximum thermodynamic probability 

and remains there or stays very close to the most probable macrostate.  

Most probable state (Equilibrium state) 

 The most probable state of a system is that macrostate which has the maximum 

probability of occurrence.  In the case of N particles distributed in two compartments, the 

probability of occurrence of the most probable state is given by   

                            
N

N

N

max

C
=P

2

2/       

 In a Static system, the particles remain latched i.e. at rest when put in a compartment or 

placed in a cell. 
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  But in dynamic system, the particles are in a constant  state of motion and are not 

stationary. Suppose, such molecules are enclosed in a vessel having two compartments, using 

a permeable partition.  Due to collisions, the number of molecules in the two compartments 

go on changing and the system moves from one macrostate to another very large number of 

times per second.  This number is generally of the order of millions of billions.  Some 

macrostates are more probable than the other depending upon frequency of the microstate.  

When the number of particles, in a dynamic system is very large, the system exists practically 

all the time in the most probable macrostate.  This is because the probabilities of macrostates 

fall extremely rapidly, even for a very small deviation from the most probable state.  This 

most probable state is known as the equilibrium state of the system.  A dynamic system 

always tends to go from a state of lower probability towards the state of maximum 

probability i.e., the equilibrium state.  Even it is disturbed by some external causes of force, 

again it quickly comes back to its equilibrium state. 

Concept of a cell in a compartment 

 In practice, if we wish to distribute n distinguishable particles in k compartments which 

are of unequal size, we find that the a priori probability of a particle going into a particular 

compartment is not the same.  Large probability in a bigger compartment.  This is because of 

unequal size of the compartment.  This difficulty is overcome by introducing the concept of a 

cell. 

 Each compartment is divided into a very large number of sub-compartments, called as 

cells, in such a way that each cell is of same size.  Therefore, all the cells have the same a 

priori probability.  The size of the cell is very very small and hence the number of cells in 

each compartment is exceedingly large.  For a given size of the cell, the number of cells in 

each compartment is fixed.   

Distribution of particles 

 The concept of a cell is well understood by considering the distribution of particles in 

different compartments marked as 1, 2, 3, … i…, k-1, k of unequal size.  We wish to distribute 

n distinguishable particles in these k compartments.  As the compartments are of unequal 

size, a priori probability of a particle going into particular compartment is not the same.  To 

overcome this difficulty, we introduce a concept of a cell.  For this purpose we divide each 

compartment, from compartment I to k, into cells of equal sizes, so that compartment 1 
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contains g1 cells, compartment 2 contains g2 cells, compartment 3 contains g3 cells and so on, 

the i
th

 compartment containing gi cells and lastly k
th

 compartment has gk cells.    

 

 

 

 

 

 

 

                             Figure: Distribution of particles in different size compartments 

 

As the compartments are of unequal size as shown in the figure the number of cells in each 

compartment will be different.  The total number of cells, each of same size = g1 + g2 + …….. 

+ gi + ……….gk = G Hence 

 Since all the cells are of same size, there is an equal a priori probability i.e. a 

particle in a given compartment can go into any cell within the compartment with 

equal probability. 

 Moreover, since the size of the compartment is big, the number of cells in any 

compartment are exceedingly large. 

 

Ensemble and Average Properties 

 The usual meaning of ensemble is the whole or all the parts taken together.  In statistical 

mechanics an ensemble is a collection of identical systems with all accessible microstates 

represented in it.  Consider a system of 4 particles in two similar compartments.  The system, 

under constraint 4,=Σni  has 16 different microstates.  We can draw all the sixteen 

microstates as 15 identical systems.  Consider just one system, which at time t = 0 has a 
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particular microstate, say (ab, cd).  Then due to interactions among the particles, the system 

will pass through all the accessible microstates as time passes.  In a short time, we may find 

that same microstates repeat more frequently than the other.  But if we observe for long 

enough time, then we should expect all the microstates are repeated with equal frequency.  In 

the present case of 15 accessible states, suppose we make 48 observations in all, then we 

expect that each microstate should appear just 3 times.  But in practice, some microstates may 

occur even 7 times and some microstates may not occur at all in these 48 observations.  On 

the other hand, if we make          48 x 10
20

 observations in all, then the observed frequency of 

each of the 16 microstates would not be different from 3 x 10
20

 by more than (say) 1 part in 

10
12 

or so.    

 An ensemble for a system of 4 particles in two equal compartments 

 We may either make these 48 x 10
20

 times observations on a single particle system or at 

a single time on a collection of 48 x 10
20

 identical systems.  The conclusion would be the 

same.  Here we take into consideration the postulate of equal a priori probabilities.  It is a 

fundamental postulate of statistical mechanics and it says that a system can exist in each of 

the accessible microstates with equal probability.  In other words, no preference is to be given 

to any one or more microscopic states over others. 

 The probability of particular macrostate is given by the number of microstates falling 

under it divided by the total number of accessible microstates.  Let a macrostate be 

designated by suffix j and let Wj represent the frequency with which it occurs in the ensemble 

is given by 

Pj = 
j

j

ΣW

W
 

If any property x has value xj in the j
th

 macrostate then the average value of this property over 

the ensemble, denoted by x or < x >, is given by   

X = < x > = Σj xj  pj = 
j

j

ΣW

ΣxjW
 

It may be noted that we have no means of knowing how the system really passes through the 

various macrostates, much less about the further details of the microstates.  
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Degrees of Freedom 

 From the statistical point of view, a monatomic gas constitutes the simplest system.  The 

energy expression for a system involved  f co-ordinates of position and f co-ordinates of 

momentum.  We then say that a system comprising one molecule has  f degrees of freedom.  

If there are of N molecules in the system, the energy expression for the system of N 

molecules has Nf co-ordinates of position and Nf co-ordinates of momentum.  Thus, the 

system has Nf  degree of freedom. 

Position Space 

 Consider a system consisting of N particles distributed in a given volume V.  If the 

system is Static all particles will remain fixed at various points in space.  To completely 

specify the position of any particle in the three dimensional space, we must know the values 

of its three Cartesian coordinates x, y and z which are mutually perpendicular to each other.  

As there are N particles, a knowledge of 3 N co-ordinates gives complete information about 

such a static system. 

 The three-dimensional space in which the location of a particle is completely given by 

the three position coordinates, is known as position space. 

A small element in position space is denoted by volume element dV and is expressed as   

    dv = dx dy dz   

Momentum Space 

 If the system is dynamic, its particles move about with various velocities and hence 

posses moments.  A complete specification of such a system cannot be described in terms of 

position co-ordinates only.  For a dynamic system, we must specify the three components of 

momentum* with the help of three velocity components vx vy and v2 in addition to the three 

position coordinates x, y and z.  

 If m is the mass of the particle moving with a velocity v, its momentum p = mv. 

 The three components of momentum are  

             px = mvx,  ;   py = mvy   ;    pz = mvz 
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 Just as the position of particle is completely given by the three position co-ordinates x, y 

and z in three dimensional position space, the momentum of the particle is completely 

specified by the three mutually perpendicular momentum coordinates px py and pz three-

dimensional space known as momentum space and the small volume element in momentum 

space is given dpx dpy dpz. 

Phase Space`  

 A combination of position space and momentum space is known as phase space.  This, 

phase space has 6 dimensions, i.e. three position coordinates and three momentum 

coordinates, all mutually perpendicular to each other.  The position of a particle in phase 

space is specified by a point with six coordinates x, y, z, px‟ py‟ pz‟ Complete information 

about any particle in a dynamic system can be obtained from a knowledge of these six 

coordinates which completely determine its position as well as moments. 

 A small element in phase space is denoted by dt and is given by  

                                           dt = (dx dy dz) (dpx dpy dpz) 

 

The mu-space  

 Let us limit ourselves to a system comprising of 1 molecule.  Moreover, consider it to be 

mono-atomic as the simplest system.  The state of the gas in completely known if the position 

and momentum of each atom of the gas is specified.  The position of an atom can be specified 

in terms of its rectangular coordinates x, y and z.  This is position space.  The momentum of 

an atom is completely known if its rectangular momentum components px   , py and pz are 

specified.  This is called momentum space.  These six quantities x, y, z, px , py  , pz   for each 

atom is known, the state of the gas can be determined.  The space covered by the infinite set 

of these six coordinates is called the phase space for a single monatomic molecule.  

 Since the energy of a molecule is given by (px
2
 + py

2
 + pz

2
) /2m which is equal to p

2
/2m, 

the momentums space representation also gives representation of energy of the state. 

 Such a six-dimensional space for a single particle is called molecular phase space or mu-

space or μ-space.  Since 6-dimensional diagram can not be drawn, phase space is purely a 

mathematical concept. 
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                                           Figure : Phase cells 

Suppose that position or momentum of one of the molecules is changed slightly.  The phase 

point of this molecule will undergo a displacement in the phase space; and the microscopic 

state of the gas will be modified.  To explain further, let us consider that the mu phase space 

is divided into two-dimensional energy sheet, having position coordinate as x-axis and 

momentum coordinate as px-axis.  Let us subdivide the range of variables x and px  into 

arbitrary small discrete intervals called as phase cells of arbitrary size.   

Gamma Space 

 If we deal with a system of N molecules, there are two methods.  One is to have the 6-

dimensional (3 position + 3 momentum) phase space representation, and we take N points to 

represent the positions and moments of the N molecules at a given instant.  This is called μ – 

space or mu-space representation. 

 The other alternative method is space representation.  It is a 6N-dimensional phase space 

representation in which a single point represents a state of entire N- particle system and is 

referred as the representative point.  This is in contrast to the μ-space.  Which refers to only 

one particle, ie. one point for one particle.  The space representation is mathematically more 

difficult to handle.  But it has one great advantage.  If an ensemble is to be represented, this 

6N-dimensional representation alone is applicable.  Different points will then represent the 

corresponding all microstates of another macrostate.  The space is considered to be a 

conceptual Euclidean space having 2fN rectangular axes. 

  In general case of ,   f degrees of freedom per molecules we shall have:  

1) position space               f dimensional 
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2) momentum space          f dimensional 

3) Mu space                       2f  dimensional 

4) gamma space                 2fN dimensional 
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UNIT IV:  Nuclear Physics and Radiation Physics 

 Nuclear Physics:   Nuclear constituents, size, mass, spin and charge - binding energy - 

binding energy curve - nuclear fission - chain reaction – nuclear reactor  

 Radiation Physics: radioactive disintegration – half-life period - radiation hazards  

 

Nuclear constituents 

     The atomic nucleus was discovered in 1911 by Rutherford. Rutherford‟s α- particle 

scattering experiments showed that the atom consists of a very small nucleus surround by 

orbiting electrons. All atomic nuclei are made up of elementary particles called protons and 

neutrons. A proton has a positive charge of the same magnitude as that of an electron. A 

neutron is electrically neutral. The proton and the neutron are considered to be two different 

charge states of the same particle which is  commonly called as nucleon. A species of nucleus 

known as a nuclide, is represented schematically by ZX
A 

where Z, the atomic number, 

indicates the number of protons, A the mass number, indicates the total number of protons 

plus neutrons an X is the chemical symbol of the species. 

                                  N = Number of neutrons = A-Z. 

     As an example, the chlorine nucleus 17Cl
35

 has Z=17 protons, A= 35 nucleons and 

                  N =35-17=18 neutrons. 

Classification of nuclei: 

             Isotopes are nuclei with the same atomic number Z but different mass numbers A. The 

nuclei 14 Si
18

, 14Si
29

, 14Si
30

 and 14Si
32

 are all isotopes of silicon. The isotopes of an element 

all contains the same number of protons but have different number of neutrons. Since the 

nuclear charge is responsible for the characteristic properties of an atom, all the isotopes of 

an element have an identical chemical behavior and differ physically only in mass. 

              Isobars are nuclei  with the same mass number A, but different atomic number.  The 

nuclei 8O
16

, 7N
16

 are examples of isobars. The isobars are the atoms of different elements and 

have different physical and chemical properties.  
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     Isotones are nuclei with an equal number of neutrons .  Some isotones are 6C
14

, 7N
15

 and 

8O
16

. 

          There are atoms which have the same Z and same A, but differ from one another in their 

nuclear energy states and exhibit difference in their internal structure. Such nuclei are called 

isomeric nuclei or isomers. 

          Nuclei having the same mass number A, but with proton and neutron number interchanged 

(ie., the number of proton in one is equal to the number of neutrons in the other) ae called 

mirror nuclei. 

        Examples. 4Be
7
 (Z=4 and N=3) and 4Li

7 
(Z=3 and N=4) 

 

General properties of nucleus 

Nuclear size: Rutherford‟s work on the scattering of  α particles showed that the mean radius 

of an atomic nucleus is of the order of 10
-14

 to 10
-15

 m while that of the atom is about 10
-10

 m. 

Thus the nucleus is about 10000 times smaller in radius than the atom. 

The empirical formula for the nuclear radius is 

                                    R= r0A
1/3

 

Where A is the mass number and r0 = 1.3×10
-15  

 m = 1.3 fermi. Nuclei are so small that the 

Fermi (fm) is an appropriate unit of length. 1 fm = 10
-15

 m. From this formula we find that the 

radius of the 6C
12

 nucleus is R = (1.3)(12)
1/3

= 3 fm. Similarly, the radius of the 7Ag
107

 nucleus 

is 6.2 fm and that of the 92U
238

 nucleus is 8.1fm. 

  Nuclear mass: We know that the nucleus consists of protons and neutrons. Then the mass of 

the nucleus should be assumed nuclear mass=Zmp + Nmn. 

Where mp and mn are the respective proton and neutron masses and n is the neutron number. 

Nuclear masses are experimentally measured accurately by mass spectrometers.  

Nuclear density: The nuclear density ρ
N can be calculated from  

                              

ρN=
nuclear mass

nuclear volume
.  
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 Nuclear mass = A mN , where A = mass number and mN = mass of the nucleon = 1.67 × 10
-27

 

kg. 

 Nuclear volume = π
3

4
R

3 
= π

3

4
(r0 A

1/3
)
3 

= π
3

4
r0

3
A 

     ρ
N = 1.816 ×10 

17
 kg m

-3
.  

Note the high value of the density of the nucleus. This shows that the nuclear matter is in an 

extremely compressed state. Certain stars (the white dwarf) are composed of atoms whose 

electron cells have collapsed owing to enormous pressure, and the densities of such stars 

approach that of pure nuclear matter. 

Nuclear charge: The charge of the nucleus is only  due to the protons contained in it, since 

the neutrons have zero charge . Each proton has a positive charge of 1.6 ×10
-19

 C. The nuclear 

charge is Ze where Z is the atomic number of the nucleus.  

Nuclear magnetic dipole moments: We know that the spinning electron has an associated 

magnetic dipole moment of l Bohr magneton. i.e.,
 

e

e

eh

2m

2π/
 . Proton has a positive 

elementary charge and due its spin, it should have a magnetic dipole moment. According to 

Dirac‟s theory, where 
p

N

eh
=μ

2m

2π/
 where mp is the proton mass. Nμ is the nuclear magneton 

and is the unit of magnetic moment. 
μN has a value of 5.050 x   10

-27 
J/T.  Since mp = 1836 

me, the nuclear magneton is only 1/1836 of a Bohr magneton. For nucleons, however, 

measurements give μp= 2.7925 and μn = -1.912 μN. 

Electric quadrupole moment: In addition to its magnetic moment, a nucleus may have an 

electric quadrupole moment. An electric dipole moment is zero for atoms and nuclei in 

stationary states. This is a consequence of the symmetry of nuclei about the centre of mass. 

However, this symmetry does not need to be spherical; there is nothing precluding the 

nucleus from assuming the shape of an ellipsoid of rotation, for instance. Indeed most nuclei 

do assume approximately such shape and the deviation from spherical symmetry is expressed 

by a quantity called the electric quadrupole moment.  
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Binding energy 

An atomic nucleus consists of particles such as protons and neutron. The nuclear mass is 

found to be less than the combined masses of the particles contained in it. The energy 

equivalent of the missing mass of the nucleus is called the binding  energy of the nucleus . 

The missing mass is known as the mass defect. 

     The theoretical explanation for the mass defect is based on Einstein‟s equation E=mc
2
. 

When the Z protons and N neutrons combine to make a nucleus, some of the mass (∆m) 

disappears because it is converted into an amount of energy ∆E= (∆m) c
2
. This energy is 

called the binding energy (BE) of the nucleus.  If he B.E. is large, the nucleus is stable. A 

nucleus having the least possible energy, equal to the B.E., is said to be in the ground state. If 

the nucleus has an energy E > E min, it is said to be in the excited state. The case E = 0 

corresponds to dissociation of the nucleus into its constituent nucleons.   

(∆m)  = {(Zmp + Nmn) – M}  

    Where M is the experimentally determined mass of a nuclide having Z protons and N 

neutrons,  

    BE=  (∆m) c
2
 

    BE = {(Zmp + Nmn) – M} c
2
.  Joule 

If the mass defect is found in a.m.u then the binding energy BE=  (∆m) x 931 MeV 

    since 1 a.m.u = 931 MeV 

     If BE > 0, the nucleus is stable and energy must be supplied from outside to disrupt it into 

its constituents. If BE < 0, the nucleus is unstable and it will disintegrate by itself. To disrupt 

a stable nucleus into its constituents protons and neutrons, the minimum energy required is 

the binding energy. The magnitude of the B.E. of a nucleus determines its stability against 

disintegration. The binding energy of deuteron is 2.2MeV. It breaks into proton and neutron 

when a gamma particle of energy 2.2MeV interacted with the deuteron. 
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Figure: deuteron breaks  into proton and netron with energy2.2MeV 

 

Binding energy curve 

  The binding energy per nucleon is found by dividing the total binding energy BE by the 

number of nucleons contained in it. The quantity B/A is called the average binding energy 

ratio. 

B . E . per nucleon=
total B .E .of a nucleus

the number of nucleons it contains
 

The binding energy per nucleon is plotted as a function of mass number A. the curve shows 

some fluxuations at low mass number region  and then increases  gradually until it reaches a 

maximum of 8.79 MeV. The curve then drops slowly to about 7.6 MeV at the highest mass 

numbers. Evidently nuclei of intermediate mass are the most stable, since the greatest amount 

of energy must to be supplied to liberate each of their nucleons. This fact suggest that a large 

amount of energy will be liberated if heavier nuclei can somehow be split into lighter ones or 

if light nuclei can somehow be joined to form heavier ones. The former process is known as 

nuclear fission and the later as nuclear fusion. Both the processes indeed occur under proper 

circumstances and do evolve energy as predicted. 
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                                    Figure: Average Binding energy curve 

Significance of the binding energy curve 

 The curve gives important results  

1. The binding energy curve enables us to understand the nature of the force hold the 

nucleons together in the nucleus. When the value of B/A is small, we say that the nucleus is 

loosely bound. On the other hand when the value of B/A is large, the nucleus is tightly bound. 

2. It also gives an insight into nuclear fission in the nucleus. 

3. To understand about alpha decay that happens with heavy elements. 

Nuclear fission 

The process of breaking up of the nucleus of a heavy atom into two, more or less equal 

fragments with the release of large amount of energy is known as fission.  

     When uranium is bombarded with neutrons, a uranium nucleus captures a slow neutron, 

forming an unstable compound nucleus. The compound nucleus split into nearly two equal 

parts.  Some neutrons are also released in this process. 
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                                        Figure: Fission reaction 

 

The schematic equation for the fission process is 

     92U
235

 + 0n
1
     92U

236
*  +  X + Y + neutrons.                       (1) 

     92U
236

* is a highly unstable isotope of uranium, and X and Y are the fission fragments.   

The fragments are not uniquely determined, because there are various combinations of 

fragments possible and a number of neutrons are given off. Typical fission reactions are 

92U
235

 + 0n
1
           92U

236
*       56Ba

141
 + 36Kr

92
 +3on

1
 + Q                     (2) 

92U
235

 + 0n
1
          92U

236
*        54Xe

140
 + 38Sr

94
 + 20n

1
 + Q                    (3) 

Where Q is the energy released in the reaction. 

According to equation (2) 92U
235 

is bombarded by slow moving neuron, the nucleus becomes 

unstable (92U
236

*) and splits into 56Ba
141

 and 36Kr
92

 releasing 3 neutrons and energy Q. 

According to equation  (3) the number of  2 neutrons are released. So in each fission average 

of 2.5 neutrons are  released. 
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Chain reaction:  

     A chain reaction is a self-propagating process in which number of neutrons goes on 

multiplying rapidly almost in geometrical progression during fission till whole of fissile 

material is disintegrated.  

 

 

 

 

 

 

 

  

 

suppose a single neutron causing fission in a uranium nucleus produces 3 prompt neutrons. 

The three neutrons in turn may cause fission in three uranium nuclei producing nine neutrons. 

These 9 neutron in turn to cause fission in nine uranium nuclei producing 27 neutrons. And so 

on. The number of neutrons produced in n such generations is 3
n
 neutrons . The ratio of 

secondary neutrons produced to the original neutrons is called the multiplication factor (k). 

     Consider 1 kg of 92U
235

 which contains 6.023 × 10
26

/ 235  or about 25 × 10
23

 atoms. Each 

fission will release on the average 2.5 neutrons. The velocity of the neutron among the 

uranium atoms is such that a fission capture of thermal neutron by the 92U
235

 nuclei takes 

place in about 10
-8 

s each of this fission, in turn, release 2.5 neutrons. Let us assume that all 

these neutrons are available for inducing further fission reactions. Let n be the number of 

stages of fission captures required to disrupt the entire mass of 1 kg of 92U
235

. Then 

   (2.5)
n
 = 25×10

23
 or n = 60. 

     The time required for 60 fissions to take place = 60×10
-8

s = 0.6 μs 
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     Since each fission releases about 200 MeV of energy, this means that a total of 200 × 25 × 

10
23

 = 5 × 10
26

 MeV of energy is released in 0.6 μs. 

     The release of this tremendous amount of energy in such a short time interval leads to a 

violent explosion. This results in powerful air blasts and high temperature of the order of 10
7
 

K or more, besides intense radioactivity. The self-propagating process describes here is called 

a chain reaction. 

     Two types of chain reaction are possible. In one, the chain reaction is first accelerated so 

that the neutrons are built up to a certain level an there after the number of fission producing 

neutrons is kept constant. This is controlled chain reaction. Such a controlled chain reaction is 

used in nuclear reactor. In the other type of chain reaction, the number of neutrons is allowed 

to multiply indefinitely and the entire energy is released all at once. This type of reaction 

takes place in atom bombs. 

 

Multiplication factor (K): 

The ratio of secondary neutrons produced to the original neutrons is called the multiplication 

factor. It is defined as 

K=
number of neutrons of one generation

number of neutrons of the preceding generation
 

The fission chain reaction will be “critical” or steady when k = 1, it will be building up or 

“supercritical” when k>1 and it will be dying down o “subcritical” when k<1. 

 

Nuclear reactors 

   The atom bomb is due to an uncontrolled chain reaction. A very large amount of energy is 

liberated within an extremely small interval of time. Hence it is not possible to direct this 

energy for any useful purpose. But, in a nuclear reactor, the chain reaction is brought about 

under controlled conditions. If the chain reaction is put under control, after some time a 

steady state is established. Under a steady state, the rate of energy production also attains a 

constant level. Such a device in which energy is released at a given rate is known as a nuclear 

reactor.     
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 Nuclear reactors consists of five main elements: 

1. The fissionable material called the fuel, 

2. Moderator, 

3. Neuron reflector,  

                             4.  Cooling system and  

                             5. The safety and control systems. 

(1)  The fissionable substance: During the fission of U
235

 a large amount of energy is 

released. The commonly used fissionable materials ae the uranium isotopes U
233

, U
238

, the 

thorium isotopes Th
232

, and the plutonium isotopes Pu
239

, Pu
240

 and Pu
241

.  

(2) Moderator: The function of the moderator is to slow down the highly energetic neutrons 

produce in the process of fission of U
235

 to thermal energies. Heavy water (D2O), graphite, 

beryllium, etc., are used as a moderators. Ideally, moderators have low atomic weight and 

low absorption cross section for neutrons 
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(3) Neutron reflector: By the use of reflector on the surface of reactors, leakage of neutrons 

can be very much reduced and the neutron flux in the interior can be increased. Materials of 

high scattering cross section and low absorption cross section are good reflectors. 

(4) Cooling system: The cooling system removes the heat evolved in the reactor core. This 

heat is evolved from the K.E. from the fission fragments when they are slowed down in the 

fissionable substance and moderator. The coolant or heat transfer agent (water steam, He, 

CO2, air and certain molten metals and alloys) is pumped though the reactor core. Then, 

through a heat exchanger, the coolant transfers heat to the secondary thermal system of the 

reactor. 

(5) Control and safety system: The control systems enable the chain reaction to be 

controlled and prevent it from spontaneously running away. This is accomplished by pushing 

control rods into the reactor core. These rods are of a material (boron or cadmium) having a 

large neutron absorption cross section. These rods absorb the neutrons and hence cut down 

the reactivity. By pushing in the rods, the operation of the reactor can be made to die down, 

by pulling them put to build up. The safety systems protect the space surrounding the reactor 

against intensive neutron flux and gamma rays existing in the reactor core. This is achieved 

by surrounding the reactor with massive walls of concrete and lead which would absorb 

neutrons and gamma rays. 

Uses of nuclear reactor: 

1.   Nuclear power:  Nuclear reactors are used in the production of electric energy. 

 

2.   Production of radio isotopes: Nuclear reactors are useful in producing a large number of 

radio isotopes. To produce radio isotopes, a suitable compound is drawn into the center of the 

reactor core where the flux of neutrons may well be more than 10
16

/m
2
/sec. sodium 24 is 

manufactured in this way. 

            

    11Na
23

 + 0n
1
         11Na

24
* 

3.    Scientific research: Reactors produce a number of radioactive materials needed for 

research purposes. The reactors provide a huge source of neurons. Using these neutrons, 

several useful radioisotopes have been artificially produced and several nuclear reactions 

have been studied. Effects of neutron in biological tissues is also studied. Radiation damage 

is also studied.  
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Natural radioactivity 

 

 

 

 

 

 

 

            Figure : Radiation from the Radium source 

             When a sample of radium element is kept in a box, it is found that radiations 

come out of the sample. When a magnetic field is applied perpendicular to the direction 

of the radiation it is found that  three kinds of radiations  are emitting. These radiations 

are named as Alpha( α) ,Beta( β) and Gamma( γ) rays. When they are subjected to electric 

field ,these α rays are deflected to the  one direction, indicating that they are positively 

charged. The β rays are deflected to the right and hence they are negatively charged. The 

γ rays are not affected by magnetic field hence  they are uncharged. Alpha rays are 

Helium nucleus ( He4

2 ), composed of two protons and two neutrons. In other words we 

can say that alpha particle is a doubly ionized helium nucleus. Beta rays are electrons 

coming out from the nucleus. When a neutron converts into proton a beta particle is 

emitted. CaeK 40

20

0

1

40

19  .  The gamma rays are high energy  electromagnetic radiations 

consisting of photons. An excited state nucleus comes to the ground state by emitting a 

gamma ray. 
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Radioactive disintegration     

 

 

 

    

 

 

 

                Figure : Exponential decay of radioactivity 

 

  Let N be the number of atoms present in a particular radioelement at a given instant t. 

Then, the rate of decrease  -
dt

dN
 is proportional to N. 

                         - N
dt

dN
                              ………(1) 

Here λ is a constant known as the disintegration constant or decay constant of the 

radioactive element. It is defined as the ratio of the amount of the substance which 

disintegrates in unit time to the amount of substance present. 

     Eqn (1) can be written as dt
N

dN
  t.  

Integrating, logeN = -λt + C                              …………(2) 

Let the number of radioactive atoms initially present be N0. 

 Then, when t = 0, N = N0, 

                                       logeN0 = C. 

Substituting for C in eqn (2), we get, log N = -λt + log N0 
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or                  t
N0

N
e log   

or                            N= N0
e

− λt

                                       …………..(3) 

This equation shows that the number of atoms of a given radioactive substance decreases 

exponentially with time. 

Definition of half-life period: 

The half-life period of the radioactive substance is defined the time required for one half of 

the radioactive substance to disintegrate  (T1/2) . 

Value of half-life period: we know the relation N= N0
e

− λt

 

If T1/2 be the half-life period, then at  

               T = T1/2, N=N0/2 

          ∴ N0/2 = loge2 or e
λT

1/2 = 2 

Or        λT1/2 = loge2 or T1/2 = 

loge 2

λ
 

                 T1/2 = 

loge 2

λ
 = 

0.6931

λ
. 

Radiation hazards 

     When an atom bomb explodes, very powerful neutron beams, alpha rays, beta rays, and 

gamma rays are emitted. These nuclear radiations hit on living objects and humans to produce 

tremendous heat causing destruction and life loss. Likewise radiations from nuclear power 

reactor affect the workers and the surroundings. Lab technicians working in x-ray lab are also 

affected, depending on the dosage they receive. 

     Radiation causes ionization in the molecule of living cells. The ionization results in 

removal of electrons from the atoms, thus forming ions. The ions react with other atoms in 

the cells causing damage. When the dose of radiation received is a few, the cells recover and 

damage rapidly. Also, the human body can replace the damaged cells. Under heavy dosage, 
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cells divide permanently to produce abnormal cells and they become dangerous. This is the 

origin of the high risk of cancer, as a result of radiation exposure.  

     Human body is made up of many organs and each organ is made up of specialized cells. 

Ionizing radiations such as x-rays, beta rays, alpha rays and neutron beam can cause damage 

to cells ending with blindness, impotency, liver damage and even cancer. For example, if a 

gamma radiation passes through a cell, the water molecules near the DNA might be ionized 

and the ions might react with the DNA, causing it to break. 

     All cells are not equally sensitive to radiation. In general, cells that divide rapidly and / or 

those that are non- specialized cells show the effects of radiation at even low dosage levels 

than the cells that are less rapidly dividing and more specialized. Examples of more sensitive 

cells are these which produce blood. This system, called hematopoietic system, is the most 

sensitive biological indicator of radiation exposure. 
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Unit V :  Relativity and Quantum Mechanics 

Relativity: Frames of references - postulates of special theory of relativity - Lorentz 

transformation equations - Wave mechanics: matter waves - de Broglie wavelength - 

properties of wave functions - Quantum mechanics:  postulates of quantum mechanics -

Schrödinger equation - time dependent form  

Frame of reference 

 A frame of reference is a coordinate system, by which the position of a particle at a 

particular time could be specified and hence its motion could be analyzed.  The essential 

requirement of a frame of reference is that it should be rigid. 

 An object is in motion, when its position is changing with time to an observer.  Motion 

is a relative concept since it must be referred to a particular frame of reference in which the 

observer is situated.  Different observers may use different frames of reference.   For 

example, most of the observations made on the earth are as in the frame of reference attached 

to it.  In atomic physics, the motion of electron is determined as in the frame located at the 

nucleus.  Since different observers may use different frames of reference, it is important to 

know how observations made by different observers are related.  Such relations are made 

possible by means of transformation equations. 

  An inertial frame is defined as the frame of reference in which the Newton‟s first 

law (law of inertia) is obeyed.  An object, subject to no net external force, moves with a 

constant velocity when observed in an inertial frame.  A frame of reference having constant 

relative velocity with respect to an inertial frame is also an inertial frame.  Thus inertial 

frames are unaccelerated frames.  The special theory of relativity deals with motions, referred 

to inertial frames only.  The earth can be taken as an example of inertial frame.  

Postulates of the special theory of relativity 

There are two laws of special theory of relativity. They are , 

1. The laws of physics have the same mathematical form in all inertial frames. 

2. The velocity of light in vacuum (free space) is constant and it is independent of the 

velocity of the source and the observer. 



67 

Lorentz transformation Equations 

 Lorentz derived a set of transformation equations for coordinates of an event, making 

use of the postulates of the special theory of relativity.  i.e; velocity of light is assumed to be a 

constant, independent of the relative motion between the frames of reference 

 

 

 

  

 

 

 

 

 

 

                              Figure: Two inertial frames of reference 

Let S and S‟ be two inertial frames, in which the S‟ frame moves with velocity v along the 

positive X- direction with respect to the frame S.  Let O and O‟ be two observers at the origin 

of each coordinate frame. 

 Let the coordinates of an event P in the S frame be (x, y, z, t) and those in the S‟ frame 

be (x
1
, y

1
, z

1
, t

1
).  Let the origins coincide at t=t‟=0.  Let a source of light be located at O and 

that a flash of light is emitted at t=t
1
=0.  The flash spreads out as a spherical wave with centre 

at the origin in S frame.  According to the postulates of the theory of relativity, the flash 

spreads out as spherical wave in S‟ frame also, with origin at O‟.  If the velocity of light be c, 

the equation to the wave front in S is 

x
2
+y

2
+z

2
=c

2
t
2 

       ……   ……..  ……… (1) 

And in the frame S‟ it will be given by 
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x
1 2

+y
1 2

+z
1 2

=c
2
t
1 2

   ……..……..……… (2) 

 To find the relation connecting x‟ and x,y‟ and y,z‟ and z;t‟ and t, we assume that the 

transformation as linear. 

x
1
=k (x-vt) 

y
1
= y         

z
1
=z 

and t
1
 = At + Bx  ………….……… (3) 

where A, and B and k are constants to be determined.  Putting the values of x
1
, y

1
, z

1 
and t

1
 in 

equation (2). 

k
2 

(x-vt) 
2 

+ y
2
 + z

2
 = c

2 
(At + Bx)

2
 

k
2
 (x

2
- 2xvt+v

2
t
2
) + y

2
 + z

2
 = c

2
 (A

2
t
2
 + 2ABxt + B

2
x

2
) 

(k
2
- B

2
c

2
) x

2
 + y

2
 + z

2
 = (A

2
c

2
-k

2
v

2
) t

2
 + 2 (ABc

2
 + k

2
v) xt 

Comparing this with equation (1) x
2
+y

2
+z

2
 = c

2
t
2
, 

We find (k
2
-B

2
c

2
) = 1  ……….……… (4) 

(A
2
c

2 
– k

2
v

2
) = c

2
                …………… (5) 

ABc
2 

+ k
2
v = 0                      ……….…… (6) 

From equation (4), k
2
-B

2
c

2
=1 

   
B2=

k
2
− 1

c2
 

   
2

2 1

c

k
=B


                         …………………. (7) 

From equation (5), A
2
c

2
-k

2
v

2
=c

2
 

 A
2 

c
2
=c

2
 + K

2
v

2
 

 
A2=

c
2
+k

2
v

2

c2
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2

22

c

vk+c
=A

2

       ……  ….. …… (8) 

Putting these values in eqn. (6) 

ABc
2
 + k

2
v=0 

 

      2

2 1

c

–k
      

2

22

c

vk+c 2

 c
2
 + k

2
v = 0 

 

      12 –k       22 vk+c 2     =   (- k
2
v) 

Squaring, (k
2
 – 1) (c

2
 + k

2
v

2
) = k

4
v

2
 

k
2
c

2
 + k

4
v

2
 - c

2
 - k

2
v

2
 = k

4
v

2
 

k
2
c

2
 – k

2
v

2
 – c

2
 = 0 

k
2
 (c

2
 – v

2
) = c

2
 

  k
2
 = 

c
2

c2 -k 2v2
 

k= 
22

2

vc

c


  =    

22 /1

1

cv
    ……  ….. …… (9) 

Putting this in equation (8),  A= 
2

22

c

vk+c 2

 

 

A= 
2

22 .
1

c

vk
+    But   

222

2 1

vcc

k
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22

22

vc

v+vc 2




  

A=  22

2

vc

c


       =

22 /1

1

cv
    ……  ….. …… (10) 

From (9) and (10). We find that A=k, Putting A=k in equation (6) 

ABc
2
 + k

2
v = 0 

kBc
2
 + k

2
v = 0 

k (Bc
2
 + kv) = 0 

 Bc
2
 + kv = 0 

 B = 
2c

kv
 

Thus, the constants are                                                             

A = k = 
22 /1

1

cv
; B = 

2c

kv
                      

Substituting these values in equation (3), 

x
1
 = 

22 /1 cv

vtx




     ……  ….. …… (11) 

y
1
 = y       ……  ….. …… (12) 

x
1
= x       ……  ….. …… (13) 

and t
1
 =  

22 /1

1

cv
+ (

2c

kv
 )x 

t
1
 = 

22 /1

1

cv
 - 

22

2

/1

/

cv

cvx


 

t
1
 =  

22

2

/1

/

cv

cvxt




                        ……  ….. …… (14)       
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 The set of equations (11) through (14) are known as Lorentz transformation.  Equations 

for space and time coordinates.  Thus, knowing x, y, z and t for an event in S frame, the 

corresponding coordinates x
1,

 y
1
, z

1
 and t

1
 in S

1
 frame can be calculated using the above 

transformation equations.                            

 

Wave Mechanics 

 Matter has particle aspects.   The particle aspects of matter are mass, momentum, 

volume, density etc.  Similarly radiation (heat, light etc) has wave aspect  The wave aspect of  

radiation are  wavelength, amplitude, frequency etc. The matter and radiation are the two 

forms in which nature exhibits itself. 

 A part from the wave aspect, radiation is found to have the particle aspect also.  This has 

been proved experimentally by the X-ray scattering known as Compton scattering and the 

photoelectric effect.  i.e; radiation is found to have dual (double) properties. 

1. Since Nature loves symmetry, the counter part of radiation namely matter must also have 

dual properties.  i.e; matter must have particle aspect as well as wave aspect.  

                                                                  Nature 

 

 

                        Matter                                                                           Radiation 

                Particle aspect                              1. Wave aspect 

                 ………..?                                2. Particle aspect 

 

 

2.   Moreover there is close similarity between the laws of mechanics (physics of particles) 

and   

       optics (physics of radiation). 

 Hence matter and radiation must have similarity of behavior also.  If one of these has 

both wave aspect and particle aspect, the other also must exhibit dual behaviour.  
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3.  Radiation phenomena like interference and diffraction are described by integer rules.  

Electrons revolve around the nucleus in various orbits defined by integers.  This suggests that 

electron has an intrinsic property which makes it behave like a wave. 

4.   Einstein‟s mass energy relation E = mc
2
 shows the equivalence of mass and radiation.   

Hence, as radiation (energy) has dual behaviour, matter also must have particle aspect as well 

as the wave aspect, though only one aspect is exhibited at a time.  

Based on the above arguments, Louis de Broglie proposed the theory of matter waves.  

According to de Broglie‟s theory, every particle, set into motion, is associated with a wave 

known as the matter wave, which advances along with the particle.  The matter wave is set up 

as the result of the disturbance produced in the matter field surrounding the particle due to 

particle‟s motion.  The matter wave is not electromagnetic in nature. 

 The wave length „λ‟ of matter wave depends on the momentum of the particle.  If m is 

the mass and v is the velocity of the particle, the wavelength λ = 
mv

h
  where h is the Planck‟s 

constant.  

 A material particle is associated with a matter field in the same way as photon is 

associated with an electromagnetic field. 

Expression for de Broglie wavelength 

 Consider a radiation of frequency v.  The radiation consists of a stream of photons, each 

of energy E = hv, where h is the Planck‟s constant.  This is according to Planck‟s quantum 

theory. 

 Let each photon behave as a particle and let m be the equivalent mass of a photon.  

According to the special theory of relativity, the energy of each such photon is given by E = 

mc
2
, where c is the velocity of the photon (velocity of light).  Hence   

mc
2 

= hv 

mc = 
c

hv
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Now let us consider the wave aspect of the radiation.  i.e. radiation spreads out as a wave.  

From the equation for wave motion, we have the velocity of light c = vλ, where λ is the 

wavelength of the radiation. 

Hence, 
v
c  = 

1
λ .  Putting this in equation (1), we have  

mc = 
λ

h
 

  The wavelength  λ = 
mc

h
 

i.e,: λ = 
momentum

constant sPlanck '

 

De Broglie argued that the same formula for the wavelength λ could be applied to any 

particle of mass m moving with a velocity v.  Then the wavelength of the matter wave 

associated with the particle becomes 

                λ = 
mv

h
 

This wavelength is called the de Broglie wavelength of the matter-waves.  The 

wavelength λ is in inversely proportional to the mass and velocity of the particle. 

Wave function and its physical significance  

  After the advent of the theory of matter waves, an advanced branch of physics 

known as Quantum Mechanics had been, developed in 1926 by Erwin Schrodinger.  This new 

mathematical tool enables us to describe the motion of particles in the atomic scale fairly 

well.  Problems involving nuclei, atoms, molecules and compounds can be understood and 

solved easily with the help of Quantum Mechanics.  

   Apart from wavelength, wave amplitude is an important property of waves.  As far as 

the matter wave is concerned, its amplitude is a variable of the wave motion.  

 When a particle is in motion, it exhibits wave - like property. But we know that the 

position of a particle (of known momentum p) cannot be precisely located. Rather, it may 

extend up to a region (∆x) in space (due to uncertainty principle).  This makes us think that 
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the wave form representing a particle in motion is a wave - packet, whose amplitude ѱ(x) is 

varying from point to point within the region and practically zero outside the region as shown 

in Figure.  It can be proved that  

 The velocity of wave packet = particle velocity v 

i.e., when the particle moves with velocity v, the wave packet (represented by dotted line) 

also moves along with the particle with velocity v.  Since the particle's position may be 

anywhere in a region, its matter wave is not a single wave of wavelength λ and λ + dλ .  The 

resulting combination is a wave packet.  Thus, in wave mechanics, the particle's motion is 

characterized by the wave packet's motion and interaction between particles can be described 

in terms of interaction between the wave packets of these particles.  

 

 

   

                                           Figure : wave packet 

 The amplitude of the wave packet, representing the particle's motion is called the wave 

function of the particle. The wave function  ѱ  is not directly related to any measurable 

quantity. The wave function, as such, has no physical significance since it is not physically 

observable. In the most general form, the wave-function ѱ  can be expressed as a complex 

quantity (that is, a function containing imaginary quantity i = 1 ) such as  

 ѱ= A + i B,   Its modulus is |ѱ|= 
2B+A2

 

Its value is twofold. i.e., (i) it has a real part (ii), it has an imaginary part. Here A is the real 

part and B is the imaginary part of ѱ 

 A complex wave function can carry more information (due to its amplitude and phase) 

about the physical properties of a particle. The complex conjugate = A - iB, Taking the 

product of ѱ and ѱ*
, 

 ѱѱ*
 = (A+iB) (A- iB) = A

2
 + B

2
 = |ѱ 2| is real quantity. Since the product (ѱѱ*

) is a 

positive real quantity, it is an observable physical quantity. According to Max Born, the 
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quantity, (ѱѱ*
) represents the intensity of the matter wave and gives us a measure of the 

probability of finding the particle in a given region of space, in which ѱ is known.  

Properties of wave function  

1)  The wave function is a state function i.e., it corresponds to a given coordinate x in one 

dimension or (x,y,z) in three dimensions, at a given instant of time t and it is a single valued 

function. Moreover, the wave function is continuous everywhere (even across boundaries).  

2)   Let  ѱ (x) be the wave function (Probability amplitude) of a particle in a given state. 

Then, by Born's interpretation of ѱ(x), the probability that the particle may be found at x is 

given by  

  p = |ѱ (x)|2 

or P = ѱ*
 (x) ѱ (x) 

The probability that the particle may be found in a region of space dx is given by  

 P = ѱ*
 (x) ѱ (x) x range. 

 P = ѱ*
 (x) ѱ (x) dx  

in three dimensional space, the probability that the particle may be found within a volume 

element of dV = dx dy dz is given by  

P = ѱ*
 (x,y,x) ѱ (x,y,z) dx dy dz. 

The total probability that the particle is anywhere within a given bound space is  

 P = ∫ѱ*   ѱ  dV. 

 The integral is volume integral. If the boundary extends upto infinity, the limits of 

integration are from 0 to infinity. When we say that a particle exists in the universe 

(somewhere in space), the total probability given above must be equal to unity.  

 i.e.,  P = 1 (maximum value)  

  ∫ ѱ*  ѱ  dx  =1. 

The wave function that satisfies the above condition is known as normalized wave function 

and the above condition is normalization condition. Any physically acceptable wave function 
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(that is obtained as a solution in any probable) is valid if it satisfies the normalization 

condition.  

3)  The wave function and its derivatives are continuous, finite and single valued. Such a 

wave function is called well behaved wave function. Also
   ѱ(x) tends to zero as x shoots to 

infinity. 

Postulates of Quantum mechanics  

 Quantum mechanics is a mathematical tool that enables accurate description of motion 

of matter on atomic scale. It is based on the following postulates.  

1) Every physically measurable quantity that relates to the motion of a particle can be 

represented by a linear operator.  

 Dynamical variable  Operator  

Position (x) x and y  

Momentum (p) 
- i 




 ior

x  

angular momentum (L= r x p)   rxi  

Kinetic energy (T = p
2
 / 2m) 

2

2

2

22

22






m

h
or

xm

h
 

total energy [H = p
2
/2m+V(r)] 

V
m

h
2

2

2
 

Energy (E)  
t

i



  

 

Displacement, velocity, momentum, angular momentum, torque, kinetic energy, total energy 

etc are some examples of physical quantity, relating to the motion of particle. Each of these 

dynamical variables can be represented by a linear operator. An operator is indicated by a cap 

on the top.  

 An operator operating on one function transforms it into another.  
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An operator Âis said to be linear if Â (ѱ1+ѱ2) = Âѱ1 +Âѱ2 and (Âѱ )  

                                                                           = a (Âѱ ) 

2) When an operator on a wave function corresponding to a given state it yields back the 

wave function along with the eigen value for that operator.  

 For example, when y = e
3x

, 2

2

dx

yd
= 9e

3x
 = 9y 

 In this equation 2

2

dx

d
 is a differential operator. It operates on the function y = e

3
x. As a 

result of the operation, the eigen value 9 is obtained. Eigen value means 'characteristic' value 

corresponding to the given state.  

In general an operator H operating on the function u1 will give the eigen value E1 as 

Hu1=E1u1 

 Hu2 = E2u2 and so on. Similarly for another state function u2. 

One or other of the eigen value (such as E1, E2 ...) is the only possible result of the 

measurement of the quantity represented by the operator (such as H).  

3) When a given system is in a state defined by the function  ѱm the mean of the measurable 

values of a physical quantity represented by an operator Â is given by 

            ˂ A ˃   = ∫ ѱ* 
Â 

 ѱ dx        

   ˂ A ˃   is known as the expectation value of the quantity A. Care should be taken to see that  

        the  ѱ used here is normalized wave function.  

4)   A single wave function is regarded as a superposition of wave functions corresponding to 

physically distinguishable eigen states. A given wave function  ѱ can be expressed as a 

linear combination of different state functions u1, u2, u3, ... etc as  

 
 ѱ  =a1 u1 + a2u2 + a3u3+ .... 

        Where a1, a2, a3... are complex constants, u1, u2, u3 are the state (wave) functions  
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                                                             Figure: State function 

Schrodinger’s   wave equation: Time dependent form 

 When a stretched string is plucked, a wave travels along the string.  The displacement of 

the string is perpendicular to the direction of the wave.  If the wave propagates along the X 

direction, the displacement is along the Y direction.  The equation to the wave propagation is 

given by  
2

2

x

y




 = 

2

1

v
  

2

2

t

y




 

Where is the velocity of the wave.  The general solution of this differential equation is  

Y = Ae 
i(kx-wt)  

 ………………(1)  
   

  
Where k is the propagation constant (k=2 π/λ), and ω  is the angular frequency, ω  

= 2πν,   Here λ and v are wavelength and frequency respectively.  A is the amplitude of the 

wave. i = 1  . 

 When a particle is set into motion, it can be represented by the matter wave of wave 

function ѱ.  The above equation (1) can be used to represent the matter wave and in that case, 

the amplitude y is replaced by wave function ѱ 

Ψ  = Ae 
i(kx-wt)       

………………(2) 

The momentum p of the particle can be expressed in terms of k as 

P=hk   (k is propagation constant) 

k = 
p

h  

Similarly, the energy (E) of the particle can be expressed in terms of ω as 

E = h ω   (ω is angular frequency) 
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  ω =  
E

h  

Putting the values of K and ω in equation (2)  

ѱ = A exp   i   
h

Et

h

px
  

  
 ѱ = A exp    Etpx

h

i
                                        ……….3 

 Differentiation   ѱ  with respect to x twice,  

x

Ψ




 =A exp    Etpx

h

i
     

h

ip
 


h

ip
=

x

Ψ




     

 
∂

2
Ψ

∂ x
2  = 2)(

h

ip
   

2

2

x

Ψ




 = 

h2

p2
   .  

 p
2   ѱ = - h

2
. 

2

2

x

Ψ




                                    ………..4 

Differentiating  ѱ  in equation (3) with respect to t, 

   Ψ  = A exp    Etpx
h

i
             

∂ Ψ

∂ t  =A exp    Etpx
h

i
     

iE

h  

 
t

Ψ




  = -    

h

iE
  ѱ 

  E ѱ  =
i

h
   

t

Ψ




                                         ………..5 
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When the particle moves at ordinary speed, the total energy E of the particle is the sum of its 

kinetic energy and potential energy. 

Kinetic energy = 
2m

p2
    and   Potential energy is V. 

 The total energy V
p2

E 
2m

  

Multiplying both sides by the wave function ѱ 

 )
2m

( V
p2

E   

E
 Ψ = 

2m

p2Ψ
 + V  ѱ 

Substituting the value of E ѱ and p
2
 ѱ from equation (5) and (4), 

i

h
   

t

Ψ




 = 

2m

2h
 

2

2

x

Ψ




 + V  ѱ.  Since, i

2
 = -1, 

i

h 2
 = i h 

 i h 
t

Ψ




 = 

2m

2h
 

2

2

x

Ψ




 + V  ѱ.   

In three dimensions, the above equation becomes. 

i h 
t

Ψ




 = 

2m

2h
  

2 ѱ + V ѱ. 

This is Schrodinger‟s wave equation in the time-dependent from. 

The Schrodinger equation for any particle can be set up, once the potential energy of the 

particle V is known.  The equation can be solved for  ѱ and from this, any required physical 

property of the particle can be computed using the rules of quantum mechanics.  


